4 research outputs found

    Assessing white matter microstructural changes in idiopathic normal pressure hydrocephalus using voxel-based R2* relaxometry analysis

    Get PDF
    BackgroundR2* relaxometry and quantitative susceptibility mapping can be combined to distinguish between microstructural changes and iron deposition in white matter. Here, we aimed to explore microstructural changes in the white matter associated with clinical presentations such as cognitive impairment in patients with idiopathic normal-pressure hydrocephalus (iNPH) using R2* relaxometry analysis in combination with quantitative susceptibility mapping.MethodsWe evaluated 16 patients clinically diagnosed with possible or probable iNPH and 18 matched healthy controls (HC) who were chosen based on similarity in age and sex. R2* and quantitative susceptibility mapping were compared using voxel-wise and atlas-based one-way analysis of covariance (ANCOVA). Finally, partial correlation analyses were performed to assess the relationship between R2* and clinical presentations.ResultsR2* was lower in some white matter regions, including the bilateral superior longitudinal fascicle and sagittal stratum, in the iNPH group compared to the HC group. The voxel-based quantitative susceptibility mapping results did not differ between the groups. The atlas-based group comparisons yielded negative mean susceptibility values in almost all brain regions, indicating no clear paramagnetic iron deposition in the white matter of any subject. R2* and cognitive performance scores between the left superior longitudinal fasciculus (SLF) and right sagittal stratum (SS) were positively correlated. In addition to that, R2* and gait disturbance scores between left SS were negatively correlated.ConclusionOur analysis highlights the microstructural changes without iron deposition in the SLF and SS, and their association with cognitive impairment and gait disturbance in patients with iNPH

    Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: an open-label, single-arm, multicenter, pilot study

    Get PDF
    Background: Glutathione plays crucial roles in the detoxification and antioxidant systems of cells and has been used to treat acute poisoning and chronic liver diseases by intravenous injection. This is a first study examining the therapeutic effects of oral administration of glutathione in patients with nonalcoholic fatty liver disease (NAFLD). Methods: The study was an open label, single arm, multicenter, pilot trial. Thirty-four NAFLD patients diagnosed using ultrasonography were prospectively evaluated. All patients first underwent intervention to improve their lifestyle habits (diet and exercise) for 3 months, followed by treatment with glutathione (300 mg/day) for 4 months. We evaluated their clinical parameters before and after glutathione treatment. We also quantified liver fat and fibrosis using vibration-controlled transient elastography. The primary outcome of the study was the change in alanine aminotransferase (ALT) levels. Results: Twenty-nine patients finished the protocol. ALT levels significantly decreased following treatment with glutathione for 4 months. In addition, triglycerides, non-esterified fatty acids, and ferritin levels also decreased with glutathione treatment. Following dichotomization of ALT responders based on a median 12.9% decrease from baseline, we found that ALT responders were younger in age and did not have severe diabetes compared with ALT non-responders. The controlled attenuation parameter also decreased in ALT responders. Conclusions: This pilot study demonstrates the potential therapeutic effects of oral administration of glutathione in practical dose for patients with NAFLD. Large-scale clinical trials are needed to verify its efficacy. Trial registration: UMIN000011118 (date of registration: July 4, 2013)

    Surveillance of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is becoming the leading cause of hepatocellular carcinoma (HCC), liver-related mortality, and liver transplantation. There is sufficient epidemiological cohort data to recommend the surveillance of patients with NAFLD based upon the incidence of HCC. The American Gastroenterology Association (AGA) expert review published in 2020 recommends that NAFLD patients with cirrhosis or advanced fibrosis estimated by non-invasive tests (NITs) consider HCC surveillance. NITs include the fibrosis-4 (FIB-4) index, the enhanced liver fibrosis (ELF) test, FibroScan, and MR elastography. The recommended surveillance modality is abdominal ultrasound (US), which is cost effective and noninvasive with good sensitivity. However, US is limited in obese patients and those with NAFLD. In NAFLD patients with a high likelihood of having an inadequate US, or if an US is attempted but inadequate, CT or MRI may be utilized. The GALAD score, consisting of age, gender, AFP, the lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), and the protein induced by the absence of vitamin K or antagonist-II (PIVKA-II), can help identify a high risk of HCC in NAFLD patients. Innovative parameters, including a Mac-2 binding protein glycated isomer, type IV collagen 7S, free apoptosis inhibitor of the macrophage, and a combination of single nucleoside polymorphisms, are expected to be established. Considering the large size of the NAFLD population, optimal screening tests must meet several criteria, including high sensitivity, cost effectiveness, and availability

    Clinical strategy of diagnosing and following patients with nonalcoholic fatty liver disease based on invasive and noninvasive methods

    No full text
    corecore