8 research outputs found

    Subspace Variational Quantum Simulator

    Full text link
    Quantum simulation is one of the key applications of quantum computing, which can accelerate research and development in chemistry, material science, etc. Here, we propose an efficient method to simulate the time evolution driven by a static Hamiltonian, named subspace variational quantum simulator (SVQS). SVQS employs the subspace-search variational eigensolver (SSVQE) to find a low-energy subspace and further extends it to simulate dynamics within the low-energy subspace. More precisely, using a parameterized quantum circuit, the low-energy subspace of interest is encoded into a computational subspace spanned by a set of computational basis, where information processing can be easily done. After the information processing, the computational subspace is decoded to the original low-energy subspace. This allows us to simulate the dynamics of low-energy subspace with lower overhead compared to existing schemes. While the dimension is restricted for feasibility on near-term quantum devices, the idea is similar to quantum phase estimation and its applications such as quantum linear system solver and quantum metropolis sampling. Because of this simplicity, we can successfully demonstrate the proposed method on the actual quantum device using Regetti Quantum Cloud Service. Furthermore, we propose a variational initial state preparation for SVQS, where the initial states are searched from the simulatable eigensubspace. Finally, we demonstrate SVQS on Rigetti Quantum Cloud Service

    ZZ-Interaction-Free Single-Qubit-Gate Optimization in Superconducting Qubits

    Full text link
    Overcoming the issue of qubit-frequency fluctuations is essential to realize stable and practical quantum computing with solid-state qubits. Static ZZ interaction, which causes a frequency shift of a qubit depending on the state of neighboring qubits, is one of the major obstacles to integrating fixed-frequency transmon qubits. Here we propose and experimentally demonstrate ZZ-interaction-free single-qubit-gate operations on a superconducting transmon qubit by utilizing a semi-analytically optimized pulse based on a perturbative analysis. The gate is designed to be robust against slow qubit-frequency fluctuations. The robustness of the optimized gate spans a few MHz, which is sufficient for suppressing the adverse effects of the ZZ interaction. Our result paves the way for an efficient approach to overcoming the issue of ZZ interaction without any additional hardware overhead.Comment: 6 pages, 2 figures plus Supplementary Information (4 pages, 2 figures

    Experimental demonstration of a high-fidelity virtual two-qubit gate

    Full text link
    We experimentally demonstrate a virtual two-qubit gate and characterize it using quantum process tomography (QPT). The virtual two-qubit gate decomposes an actual two-qubit gate into single-qubit operations and projective measurements in quantum circuits for expectation-value estimation. We implement projective measurements via mid-circuit dispersive readout. The deterministic sampling scheme reduces the number of experimental circuit evaluations required for decomposing a virtual two-qubit gate. We also apply measurement error mitigation to suppress the effect of readout errors and improve the average gate fidelity of a virtual controlled-ZZ (CZ) gate to fav=0.9975±0.0028f_{\rm av} = 0.9975 \pm 0.0028. Our results highlight a practical approach to implement virtual two-qubit gates with high fidelities, which are useful for simulating quantum circuits using fewer qubits and implementing two-qubit gates on a distant pair of qubits.Comment: 8 pages with 3 figure

    Fast parametric two-qubit gates with suppressed residual interaction using the second-order nonlinearity of a cubic transmon

    Get PDF
    We demonstrate fast two-qubit gates using a parity-violated superconducting qubit consisting of a capacitively shunted asymmetric Josephson-junction loop under a finite magnetic flux bias. The second-order nonlinearity manifesting in the qubit enables the interaction with a neighboring single-junction transmon qubit via first-order interqubit sideband transitions with Rabi frequencies up to 30 MHz. Simultaneously, the unwanted static longitudinal (ZZ) interaction is eliminated with ac Stark shifts induced by a continuous microwave drive near resonant to the sideband transitions. The average fidelities of the two-qubit gates are evaluated with randomized benchmarking as 0.971, 0.958, and 0.962 for CZ, iswap, and swap gates, respectively
    corecore