28 research outputs found

    Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and Induction of Their Necrosis-Type Cell Death

    No full text
    Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells

    Development of Wireless Power-Transmission-Based Photodynamic Therapy for the Induction of Cell Death in Cancer Cells by Cyclometalated Iridium(III) Complexes

    No full text
    Photodynamic therapy (PDT), a noninvasive method for cancer therapy, involves the generation of reactive oxygen species (ROS) by the photochemical excitation of photosensitizers (PSs) to induce cell death in cancer cells. A variety of PS including porphyrin derivatives and metal complexes such as iridium (Ir) complexes have been reported. In clinical trials, red-near infrared (NIR) light (650–900 nm) is preferred for the excitation of PSs due to its deeper penetration into tissues compared with visible light (400–500 nm). To overcome this limitation, we established a PDT system that uses cyclometalated iridium(III) (Ir(III)) complexes that are excited with blue light in the wireless power transmission (WPT) system. To achieve this, we developed a light-emitting diode (LED) light device equipped with a receiver coil that receives electricity from the transmitter coil through magnetic resonance coupling. The LEDs in the receiving device use blue light (470 nm) to irradiate a given Ir(III) complex and excite triplet oxygen (3O2) to singlet oxygen (1O2) which induces cell death in HeLa S3 cells (human cervical carcinoma cells). The results obtained in this study suggest that WPT-based PDT represents a potentially new method for the treatment of tumors by a non-battery LED, which are otherwise difficult to treat by previous PDT systems

    Development of Wireless Power-Transmission-Based Photodynamic Therapy for the Induction of Cell Death in Cancer Cells by Cyclometalated Iridium(III) Complexes

    No full text
    Photodynamic therapy (PDT), a noninvasive method for cancer therapy, involves the generation of reactive oxygen species (ROS) by the photochemical excitation of photosensitizers (PSs) to induce cell death in cancer cells. A variety of PS including porphyrin derivatives and metal complexes such as iridium (Ir) complexes have been reported. In clinical trials, red-near infrared (NIR) light (650–900 nm) is preferred for the excitation of PSs due to its deeper penetration into tissues compared with visible light (400–500 nm). To overcome this limitation, we established a PDT system that uses cyclometalated iridium(III) (Ir(III)) complexes that are excited with blue light in the wireless power transmission (WPT) system. To achieve this, we developed a light-emitting diode (LED) light device equipped with a receiver coil that receives electricity from the transmitter coil through magnetic resonance coupling. The LEDs in the receiving device use blue light (470 nm) to irradiate a given Ir(III) complex and excite triplet oxygen (3O2) to singlet oxygen (1O2) which induces cell death in HeLa S3 cells (human cervical carcinoma cells). The results obtained in this study suggest that WPT-based PDT represents a potentially new method for the treatment of tumors by a non-battery LED, which are otherwise difficult to treat by previous PDT systems

    Cytopathological Features of a Severe Type of Corneal Intraepithelial Neoplasia

    No full text
    Purpose: To report the cytopathological features of corneal intraepithelial neoplasia (CIN) through the investigation of cytokeratin expression pattern, keratinization, cell proliferation, apoptosis, and epithelial mesenchymal transition. Patient and Methods: Corneal tissue excised from a CIN patient was examined in this study. Cryosections of the excised CIN epithelial tissue were examined by immunostaining analysis using antibodies against cytokeratins, keratinization-related proteins, Ki-67, human telomerase reverse transcriptase (hTERT), and epithelial mesenchymal transition (EMT)-related proteins. Subcellular localization of F-actin was also analyzed using phalloidin. For the detection of apoptotic cells, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed. Real-time polymerase chain reaction was performed to quantify the expression level of hTERT in the CIN epithelium. Results: The CIN epithelium exhibited a significantly altered cytokeratin expression pattern compared to normal corneas with an upregulated expression of keratinization-related proteins. The CIN epithelium also demonstrated an increased number of Ki-67-positive cells with an upregulated expression of hTERT, while exhibiting an increased number of apoptotic cells. EMT did not occur in the CIN epithelium. Conclusion: CIN epithelium seems to be slightly dedifferentiated from the corneal epithelial lineage. The status of cell proliferation and apoptosis in the CIN epithelium was significantly altered from that of normal corneal epithelium, but its malignancy level does not appear to be as high as that of metastasis-competent malignant cancers

    Di-μ2-acetato-1:2κ2O:O′;2:3κ2O:O′-bis{μ2-4,4′-dichloro-2,2′-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ6O,N,N′,O′:O,O′;2:3κ6O,O′:O,N,N′,O′-tricadmium

    Get PDF
    In the title linear homo-trinuclear complex, [Cd3(C19H18Cl2N2O2)2(C2H3O2)2], the central CdII atom is located on a centre of inversion and has a distorted octahedral coordination geometry formed by four O atoms from two bidentate/tetradentate Schiff base ligands and two O atoms from two bridging acetate ligands. The coordination geometry of the terminal CdII atom is square-pyramidal with the tetradentate part of the ligand in the basal plane and one O atom from an acetate ligand occupying the apical site. The six-membered CdN2C3 ring adopts a chair conformation. The acetate-bridged Cd...Cd distance is 3.3071 (2) Å. The crystal structure is stabilized by C—H...O hydrogen bonds, which form C(7) chain motifs and give rise to a two-dimensional supramolecular network structure lying parallel to the ab plane
    corecore