19,529 research outputs found
p-topological and p-regular: dual notions in convergence theory
The natural duality between "topological" and "regular," both considered as
convergence space properties, extends naturally to p-regular convergence
spaces, resulting in the new concept of a p-topological convergence space.
Taking advantage of this duality, the behavior of p-topological and p-regular
convergence spaces is explored, with particular emphasis on the former, since
they have not been previously studied. Their study leads to the new notion of a
neighborhood operator for filters, which in turn leads to an especially simple
characterization of a topology in terms of convergence criteria. Applications
include the topological and regularity series of a convergence space.Comment: 12 pages in Acrobat 3.0 PDF forma
A proposal for founding mistrustful quantum cryptography on coin tossing
A significant branch of classical cryptography deals with the problems which
arise when mistrustful parties need to generate, process or exchange
information. As Kilian showed a while ago, mistrustful classical cryptography
can be founded on a single protocol, oblivious transfer, from which general
secure multi-party computations can be built.
The scope of mistrustful quantum cryptography is limited by no-go theorems,
which rule out, inter alia, unconditionally secure quantum protocols for
oblivious transfer or general secure two-party computations. These theorems
apply even to protocols which take relativistic signalling constraints into
account. The best that can be hoped for, in general, are quantum protocols
computationally secure against quantum attack. I describe here a method for
building a classically certified bit commitment, and hence every other
mistrustful cryptographic task, from a secure coin tossing protocol. No
security proof is attempted, but I sketch reasons why these protocols might
resist quantum computational attack.Comment: Title altered in deference to Physical Review's fear of question
marks. Published version; references update
Management of invasive Allee species
In this study, we use a discrete, two-patch population model of an Allee species to examine different methods in managing invasions. We first analytically examine the model to show the presence of the strong Allee effect, and then we numerically explore the model to test the effectiveness of different management strategies. As expected invasion is facilitated by lower Allee thresholds, greater carrying capacities and greater proportions of dispersers. These effects are interacting, however, and moderated by population growth rate. Using the gypsy moth as an example species, we demonstrate that the effectiveness of different invasion management strategies is context-dependent, combining complementary methods may be preferable, and the preferred strategy may differ geographically. Specifically, we find methods for restricting movement to be more effective in areas of contiguous habitat and high Allee thresholds, where methods involving mating disruptions and raising Allee thresholds are more effective in areas of high habitat fragmentation
- …