2,191 research outputs found

    Risk Analysis of Organic Cropping Systems in Minnesota

    Get PDF
    When all strategies received conventional market prices, 4-year cropping sequences had greater net returns than 2-year sequences, and the organic input, 4-year strategy had the highest net return. Adding 50% of the estimated organic premium, the 4-year, organic strategy dominated all low- and high-purchased input strategies.Crop Production/Industries, Risk and Uncertainty,

    Greatly enhanced acoustic noise and the onset of stimulated Brillouin scattering

    Full text link
    Experiments using near-infrared to ultraviolet lasers offer the potential to study the acoustic noise in plasmas. As the onset of stimulated Brillouin scattering (SBS) has come to be closely examined, the evidence indicates that the acoustic noise may often or always be far above thermal levels. Evidence regarding the noise is reported here, from two recent experiments which confirmed the theoretically anticipated onset behavior for SBS. In one case, the noise appears to be greatly enhanced above thermal levels. In the other case, the data place an upper limit on the noise level. There is physical grounds to believe that enhanced acoustic noise may be ubiquitous in plasmas, even in the absence of plasma instabilities which drive turbulence. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70848/2/PHPAEN-4-5-1825-1.pd

    Systematic reduction of sign errors in many-body calculations of atoms and molecules

    Full text link
    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Phys. Rev. B {\bf 79}, 195117 (2009), {\it ibid.} {\bf 80}, 125110 (2009)] is shown to be an accurate and robust method for calculating the ground state of atoms and molecules. By direct comparison with accurate configuration interaction results for the oxygen atom we show that SHDMC converges systematically towards the ground-state wave function. We present results for the challenging N2_2 molecule, where the binding energies obtained via both energy minimization and SHDMC are near chemical accuracy (1 kcal/mol). Moreover, we demonstrate that SHDMC is robust enough to find the nodal surface for systems at least as large as C20_{20} starting from random coefficients. SHDMC is a linear-scaling method, in the degrees of freedom of the nodes, that systematically reduces the fermion sign problem.Comment: Final version accepted in Physical Review Letters. The review history (referees' comments and our replies) is included in the source
    corecore