3,934 research outputs found
Management of invasive Allee species
In this study, we use a discrete, two-patch population model of an Allee species to examine different methods in managing invasions. We first analytically examine the model to show the presence of the strong Allee effect, and then we numerically explore the model to test the effectiveness of different management strategies. As expected invasion is facilitated by lower Allee thresholds, greater carrying capacities and greater proportions of dispersers. These effects are interacting, however, and moderated by population growth rate. Using the gypsy moth as an example species, we demonstrate that the effectiveness of different invasion management strategies is context-dependent, combining complementary methods may be preferable, and the preferred strategy may differ geographically. Specifically, we find methods for restricting movement to be more effective in areas of contiguous habitat and high Allee thresholds, where methods involving mating disruptions and raising Allee thresholds are more effective in areas of high habitat fragmentation
Mass and power modeling of communication satellites
Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices
Risk Analysis of Organic Cropping Systems in Minnesota
When all strategies received conventional market prices, 4-year cropping sequences had greater net returns than 2-year sequences, and the organic input, 4-year strategy had the highest net return. Adding 50% of the estimated organic premium, the 4-year, organic strategy dominated all low- and high-purchased input strategies.Crop Production/Industries, Risk and Uncertainty,
The Risk of Paradoxical Embolism (RoPE) Study: Developing risk models for application to ongoing randomized trials of percutaneous patent foramen ovale closure for cryptogenic stroke
<p>Abstract</p> <p>Background</p> <p>Despite the diffusion into practice of percutaneous closure of a patent foramen ovale (PFO) in patients with cryptogenic stroke (CS), the benefits have not been demonstrated, and remain unclear. For any individual presenting with a PFO in the setting of CS, it is not clear whether the PFO is pathogenically-related to the index event or an incidental finding. Further, the overall rate of stroke recurrence is low in patients with CS and PFO. How patient-specific factors affect the likelihood that a discovered PFO is related to an index stroke or affect the risk of recurrence is not well understood. These probabilities are likely to be important determinants of the benefits of PFO closure in CS.</p> <p>Design/Methods</p> <p>The goal of the Risk of Paradoxical Embolism (RoPE) Study is to develop and test a set of predictive models that can identify those patients most likely to benefit from preventive treatments for PFO-related stroke recurrence, such as PFO closure. To do this, we will construct a database of patients with CS, both with and without PFO, by combining existing cohort studies. We will use this pooled database to identify patient characteristics associated with the presence (versus the absence) of a PFO, and to use this "PFO propensity" to estimate the patient-specific probability that a PFO was pathogenically related to the index stroke (Model #1). We will also develop, among patients with both a CS and a PFO, a predictive model to estimate patient-specific stroke recurrence risk based on clinical, radiographic and echocardiographic characteristics. (Model #2). We will then combine Models #1 and #2 into a composite index that can rank patients with CS and PFO by their conditional probability that their PFO was pathogenically related to the index stroke <it>and </it>the risk of stroke recurrence. Finally, we will apply this composite index to completed clinical trials (currently on-going) testing endovascular PFO closure against medical therapy, to stratify patients from low-expected-benefit to high-expected-benefit.</p
Bar-grid oscillators
Grid oscillators are an attractive way of obtaining high power levels from the solid-state devices, since potentially the output powers of thousands of individual devices can be combined. The active devices do not require an external locking signal, and the power combining is done in free space. Thirty-six transistors were mounted on parallel brass bars, which provide a stable bias and have a low thermal resistance. The output power degraded gradually when the devices failed. The grid gave an effective radiated power of 3 W at 3 GHz. The directivity was 11.3 dB, and the DC-to-RF efficiency was 22%. Modulation capabilities of the grid were demonstrated. An equivalent circuit model for the grid is derived, and comparison with experimental results is shown
A 100-Element MESFET Grid Oscillator
A planar grid oscillator which combines the outputs of 100 devices quasi-optically is presented. The planar configuration is attractive because it is compatible with present-day IC fabrication techniques. In addition, the grid's structure leads to a transmission-line model that can readily be applied to the design of larger grids in the future. This approach is particularly attractive for wafer-scale integration at millimeter wavelengths. The grid oscillates near 5 GHz and can be frequency tuned with mirror spacing from 4.8 GHz to 5.2 GHz. The far-field radiation patterns for the grid are shown. From the pattern, the directivity is calculated to be 16 dB. The ERP is measured to be 25 W. The DC input power is 3 W, and the power radiated from the grid is calculated to be 0.625 W. This gives a DC-to-RF efficiency of 20%
Proximity-Coupled Ti/TiN Multilayers for use in Kinetic Inductance Detectors
We apply the superconducting proximity effect in TiN/Ti multi-layer films to
tune the critical temperature, Tc, to within 10 mK with high uniformity (less
than 15 mK spread) across a 75 mm wafer. Reproducible Tc's are obtained from
0.8 - 2.5 K. These films had high resistivities, > 100 uOhm-cm and internal
quality factors for resonators in the GHz range on the order of 100k and
higher. Both trilayers of TiN/Ti/TiN and thicker superlattice films were
prepared, demonstrating a highly controlled process for films over a wide
thickness range. Detectors were fabricated and showed single photon resolution
at 1550 nm. The high uniformity and controllability coupled with the high
quality factor, kinetic inductance, and inertness of TiN make these films ideal
for use in frequency multiplexed kinetic inductance detectors and other
potential applications such as nanowire detectors, transition edge sensors and
associated quantum information applications
Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds.
Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), β-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45SŽ, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing
- âŚ