119 research outputs found

    A Low Latitude Halo Stream around the Milky Way

    Get PDF
    We present evidence for a ring of stars in the plane of the Milky Way, extending at least from l = 180 deg to l = 227 deg; the ring could encircle the Galaxy. The low Galactic latitude structure is at a fairly constant distance of R=18±2R = 18 \pm 2 kpc from the Galactic Center above the Galactic plane, and has R=20±2R = 20 \pm 2 kpc in the region sampled below the Galactic plane. The evidence includes five hundred SDSS spectroscopic radial velocities of stars within 30 deg of the plane. The velocity dispersion of the stars associated with this structure is found to be 27 km/s at (l,b) = (198,-27), 22 km/s at (l,b) = (225, 28), 30 km/s at (l,b) = (188, 24), and 30 km/s at (l,b) = (182, 27) degrees. The structure co-rotates with the Galactic disk stars at 110±25110 \pm 25 km/s. The narrow measured velocity dispersion is inconsistent with power law spheroid or thick disk populations. We compare the velocity dispersion in this structure with the velocity dispersion of stars in the Sagittarius dwarf galaxy tidal stream, for which we measure a velocity dispersion of 20 km/s at (l,b) = (165, -55) degrees. We interpret our measurements as evidence for a tidally disrupted satellite of 2×1072 \times 10^7 to 5×1085 \times 10^8 solar masses which rings the Galaxy

    Insights into Nuclear Clusters in 28^{28}Si via Resonant Radiative Capture Measurements

    Full text link
    International audienceThe heavyion radiative capture reaction 12C(16O,γ\gamma)28Si has been studied at three energies on( ELab = 20.0 and 21.2 MeV) and off( ELab = 20.7 MeV) resonance at Triumf (Vancouver) using the stateoftheart Dragon 0° spectrometer and its very efficient associated BGO γ\gamma array. Intermediate states around Ex = 11.5 MeV, carrying a large part of the resonant flux have been observed for the first time in this system. The nature of those doorway states is discussed in terms of recently calculated cluster bands in 28Si. The results are compared to a recent similar investigation of the 12C(12C,γ\gamma)24Mg reaction

    Decay Modes of Narrow Molecular Resonances

    Full text link
    présenté par Sandrine Courtin (DRS-IPHC)The heavy-ion radiative capture reactions 12C(12C,γ)24Mg^{12}C(^{12}C,\gamma)^{24}Mg and 12C(16O,γ)28Si^{12}C(^{16}O,\gamma)^{28}Si have been performed on and off resonance at TRIUMF using the Dragon separator and its associated BGO array. The decay of the studied narrow resonances has been shown to proceed predominantly through quasi-bound doorway states which cluster and deformed configurations would have a large overlap with the entry resonance states

    The Morphometric Synthesis for landmarks and edge-elements in images

    Full text link
    Over the last decade, techniques from mathematical statistics, multivariate biometrics, non-Euclidean geometry, and computer graphics have been combined in a coherent new system of tools for the biometric analysis of landmarks , or labelled points, along with the biological images in which they are seen. Multivariate analyses of samples for all the usual scientific purposes - description of mean shapes, of shape variation, and of the covariation of shape with size, group, or other causes or effects - may be carried out very effectively in the tangent space to David Kendall's shape space at the Procrustes average shape. For biometric interpretation of such analyses, we need a basis for the tangent space that is Procrustes-orthonormal, and we need graphics for visualizing mean shape differences and other segments and vectors there; both of these needs are managed by the thin-plate spline. The spline also links the biometrics of landmarks to deformation analysis of curves in the images from which the landmarks originally arose. This article reviews the principal tools of this synthesis in a typical study design involving landmarks and edge information from a microfossil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75091/1/j.1365-3121.1995.tb00535.x.pd

    High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics

    Get PDF
    Although the topography of van de Waals (vdW) layers and heterostructures can be imaged by scanning probe microscopy, high-frequency interface elastic properties are more difficult to assess. These can influence the stability, reliability and performance of electronic devices that require uniform layers and interfaces. Here, we use picosecond ultrasonics to image these properties in vdW layers and heterostructures based on well-known exfoliable materials, i.e. InSe, hBN and graphene. We reveal a strong, uniform elastic coupling between vdW layers over a wide range of frequencies of up to tens of gigahertz (GHz) and in-plane areas of 100 _m2. In contrast, the vdW layers can be weakly coupled to their supporting substrate, behaving effectively as free standing membranes. Our data and analysis demonstrate that picosecond ultrasonics offers opportunities can probe the high-frequency elastic coupling of vdW nanolayers and image both perfect and broken interfaces between different materials over a wide frequency range, as required for future scientific and technological developments

    Coherent acoustic phonons in van der Waals nanolayers and heterostructures

    Get PDF
    Terahertz (THz) and sub-THz coherent acoustic phonons have been successfully used as probes of various quantum systems. Since their wavelength is in the nanometer range, they can probe nanostructures buried below a surface with nanometer resolution and enable control of electrical and optical properties on a picosecond time scale. However, coherent acoustic phonons have not yet been widely used to study van der Waals (vdW) two-dimensional (2D) materials and heterostructures. This class of 2D systems features strong covalent bonding of atoms in the layer planes and weak van der Waals attraction between the layers. The dynamical properties of the interface between the layers or between a layer and its supporting substrate are often omitted as they are difficult to probe. On the other hand, these play a crucial role in interpreting experiments and/or designing new device structures. Here we use picosecond ultrasonic techniques to investigate phonon transport in vdW InSe nanolayers and InSe/hBN heterostructures. Coherent acoustic phonons are generated and detected in these 2D systems and allow us to probe elastic parameters of different layers and their interfaces. In particular, our study of the elastic properties of the interface between vdW layers reveals a strong coupling over a wide range of frequencies up to 0.1 THz, offering prospects for high-frequency electronics and technologies that require control over the charge and phonon transport across an interface. In contrast, we reveal a weak coupling between the InSe nanolayers and sapphire substrates, relevant in thermoelectrics and sensing applications, which can require quasi-suspended layers

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    • 

    corecore