16 research outputs found
Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors
Background
Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device.
Results
The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects).
Conclusions
The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence âTailor-Made Fuels from Biomassâ, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities
Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation
<p>Abstract</p> <p>Background</p> <p>The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments.</p> <p>Results</p> <p>We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system <it>E.coli </it>BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the <it>E.coli </it>cells via a phosphate limitation.</p> <p>Conclusions</p> <p>The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant <it>E.coli</it>-strains.</p
Does diphenylacetylene (tolan) fluoresce from its second excited singlet state? Semiempirical MO calculations and fluorescence quantum yield measurements
It is confirmed by measurements of fluorescence spectra and quantum yields that the fluorescence in tolan originates from the same state that causes the absorption band at lowest energy. The temperature dependence of the fluorescence quantum yield shows that this state is thermally deactivated with an activation energy of E(A) = 14.0 kJ/mol. Geometry optimizations of the states S-0, S-1, and T-1 of tolan with the semiempirical AM1 method lead to planar structures with D-2h symmetry. Potential energy curves along the triple-bond stretching coordinate have been calculated for several low-lying excited states with a combination of the AM1 and the INDO/S methods. It is found that for large triple-bond lengths, the 1(1)A(u)-state with sigma pi* character becomes the lowest excited singlet state. It is proposed that thermal deactivation of S-1(1(1)B(1u) leads to this state. Nonvertical excitation of 1(1)A(u) could explain the weak lines found in supersonic jet experiments below the onset of the 1(1)A(g) --> 1(1)B(1u) transition