11 research outputs found

    Biocomposites Produced from Hardwood Particles by Equal Channel Angular Pressing Without Additives

    No full text
    Equal channel angular pressing (ECAP) has been shown to be a promising method for producing biocomposites from wood particles. However, severe plastic deformation during ECAP would cause considerable cracking when consolidation is carried out without a binder. In this study, the processing conditions were investigated for ECAP of hardwood particles into bulk biocomposites without any additives. Crack formation and wood cell deformation were examined in conjunction with thermal stability and crystallinity of the biocomposites. In comparison with hot pressing without severe shearing, a decrease in crystallinity and severe deformation of wood cells occurred during ECAP. Improved processability and homogeneous deformation would occur at high ECAP temperature (e.g., 210 °C) or low ECAP speed (e.g., 10 mm/min), leading to reduced crack formation in the ECAP-produced biocomposites. Despite its tendency to cause periodic cracking, effective plastic deformation in the regions between cracks was shown to improve interparticle binding. Ongoing research points to the potential achievement of crack-free hardwood (HW) consolidated without a binder, leading to significantly enhanced strength

    Work Hardening and Flow Softening of γ-TiAl Containing Ni

    No full text
    This paper presents the true stress-strain curves and data analyses of a Ni-containing TiAl and its reference alloy based on the isothermal compression tests at 1000 deg. C and 0.01-1.0 s-1 strain rates. The results show that the minor Ni addition makes the flow softening coming sooner and therefore significantly lowers the peak stress. Those effects in addition with a better balance between the work hardening and flow softening during hot deformation, improve the steady state flow behavior of TiAl. The Ni-influence mechanisms are also suggested based on the TEM observation of dislocation configurations and lamellar breakdown during the deformation

    Microstructure and mechanical properties of ultra-fine grain AZ80 alloy processed by back pressure equal channel angular pressing

    No full text
    Experiments were conducted on AZ80 magnesium alloy by using a procedure of back pressure equal-channel angular pressing (BP-ECAP) in order to achieve submicron grain size. Microstructure was effectively refined by BP-ECAP. The gain size was found around 100~500 nm after 4 passes using both route A and route Bc at pressing temperatures of 200°C and 150 °C. The grain size was much finer in comparison with the same alloy but received conventional procedure of ECAP without back pressure, which maintains around 2~3 ?m after 8 passes at relatively high temperatures. Compression test results showed the yield strength increased with increasing applied pass. In addition, the samples processed using route A had a increasing of yield strength more obvious than that in samples processed using route Bc. The highest yield strength from the sample pressed by route A at 150 °C was more than twice of the yield strength in the solution-treated and forged condition

    In situ synchrotron high-energy X-ray diffraction analysis on phase transformations in Ti–Al alloys processed by equal-channel angular pressing

    No full text
    Mixtures of 47-Al and 53-Ti powders (atomic %) have been consolidated using back pressure equal-channel angular pressing starting with both raw and ball-milled powders. In situ synchrotron high-energy X-ray diffraction studies are presented with continuous Rietveld analysis obtained upon a heating ramp from 300 K to 1075 K performed after the consolidation process. Initial phase distributions contain all intermetallic compounds of this system except Al, with distribution maxima in the outer regions of the concentrations (α-Ti, TiAl3). Upon annealing, the phase evolution and lattice parameter changes owing to chemical segregation, which is in favour for the more equilibrated phases such as γ-TiAl, α2-Ti3Al and TiAl2, were followed unprecedentedly in detail. An initial δ-TiH2 content with a phase transition at about 625 K upon heating created an intermediate β-Ti phase which played an important role in the reaction chain and gradually transformed into the final products

    Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple

    No full text
    Abstract Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum‐activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in “Royal Gala” apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full‐length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9‐mediated malate transport underlying apple fruit acidity
    corecore