4 research outputs found

    Salt-Dependent Conditional Protein Splicing of an Intein from <i>Halobacterium salinarum</i>

    Full text link
    An intein from <i>Halobacterium salinarum</i> can be isolated as an unspliced precursor protein with exogenous exteins after <i>Escherichia coli</i> overexpression. The intein promotes protein splicing and uncoupled N-terminal cleavage <i>in vitro</i>, conditional on incubation with NaCl or KCl at concentrations of >1.5 M. The protein splicing reaction also is conditional on reduction of a disulfide bond between two active site cysteines. Conditional protein splicing under these relatively mild conditions may lead to advances in intein-based biotechnology applications and hints at the possibility that this <i>H. salinarum</i> intein could serve as a switch to control extein activity under physiologically relevant conditions

    Intramolecular Disulfide Bond between Catalytic Cysteines in an Intein Precursor

    Full text link
    Protein splicing is a self-catalyzed and spontaneous post-translational process in which inteins excise themselves out of precursor proteins while the exteins are ligated together. We report the first discovery of an intramolecular disulfide bond between the two active-site cysteines, Cys1 and Cys+1, in an intein precursor composed of the hyperthermophilic Pyrococcus abyssi PolII intein and extein. The existence of this intramolecular disulfide bond is demonstrated by the effect of reducing agents on the precursor, mutagenesis, and liquid chromatography–mass spectrometry (LC–MS) with tandem MS (MS/MS) of the tryptic peptide containing the intramolecular disulfide bond. The disulfide bond inhibits protein splicing, and splicing can be induced by reducing agents such as tris­(2-carboxyethyl)­phosphine (TCEP). The stability of the intramolecular disulfide bond is enhanced by electrostatic interactions between the N- and C-exteins but is reduced by elevated temperature. The presence of this intramolecular disulfide bond may contribute to the redox control of splicing activity in hypoxia and at low temperature and point to the intriguing possibility that inteins may act as switches to control extein function

    Internal Disulfide Bond Acts as a Switch for Intein Activity

    Full text link
    Inteins are intervening polypeptides that catalyze their own removal from flanking exteins, concomitant to the ligation of the exteins. The intein that interrupts the DP2 (large) subunit of DNA polymerase II from Methanoculleus marisnigri (<i>Mma</i>) can promote protein splicing. However, protein splicing can be prevented or reduced by overexpression under nonreducing conditions because of the formation of a disulfide bond between two internal intein Cys residues. This redox sensitivity leads to differential activity in different strains of E. coli as well as in different cell compartments. The redox-dependent control of in vivo protein splicing in an intein derived from an anaerobe that can occupy multiple environments hints at a possible physiological role for protein splicing

    Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N‑Terminal Cleavage

    Full text link
    Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from <i>Pyrococcus abyssi</i> (<i>Pab</i> PolII intein) can promote protein splicing <i>in vitro</i> on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar “aspartic acid effects” have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology
    corecore