93 research outputs found

    Therapeutic Antioxidant Medical Gas

    Get PDF
    Medical gases are pharmaceutical gaseous molecules which offer solutions to medical needs and include traditional gases, such as oxygen and nitrous oxide, as well as gases with recently discovered roles as biological messenger molecules, such as carbon monoxide, nitric oxide and hydrogen sulphide. Medical gas therapy is a relatively unexplored field of medicine; however, a recent increasing in the number of publications on medical gas therapies clearly indicate that there are significant opportunities for use of gases as therapeutic tools for a variety of disease conditions. In this article, we review the recent advances in research on medical gases with antioxidant properties and discuss their clinical applications and therapeutic properties

    Toll-Like Receptors and Myocardial Ischemia/Reperfusion, Inflammation, and Injury

    Get PDF
    Cardiac ischemia/reperfusion (I/R) injury occurs in several important clinical contexts including percutaneous coronary interventions for acute myocardial ischemia, cardiac surgery in the setting of cardiopulmonary bypass, and cardiac transplantation. While the pathogenesis of I/R injury in these settings is multifactorial, it is clear that activation of the innate immune system and the resultant inflammatory response are important components of I/R injury. Toll-like receptor 4 (TLR4), originally identified as the sensor for bacterial lipopolysaccharide (LPS), has also been shown to serve as a sensor for endogenous molecules released from damaged or ischemic tissues. Accordingly, recent findings have demonstrated that TLR4 not only plays a central role as a mediator of cardiac dysfunction in sepsis, but also serves as a key mediator of myocardial injury and inflammation in the setting of I/R. Furthermore, TLR4 may play a role in the development of atherosclerotic lesions. Other studies have implicated TLR4 in the adverse remodeling that may occur after ischemic myocardial injury. This emerging body of literature, which is reviewed here, has provided new insight into the early molecular events that mediate myocardial injury and dysfunction in the setting of I/R injury

    Application of Heme Oxygenase-1, Carbon Monoxide and Biliverdin for the Prevention of Intestinal Ischemia/Reperfusion Injury

    Get PDF
    Intestinal ischemia/reperfusion (I/R) injury occurs frequently in a variety of clinical settings, including mesenteric artery occlusion, abdominal aneurism surgery, trauma, shock, and small intestinal transplantation, and is associated with substantial morbidity and mortality. Although the exact mechanisms involved in the pathogenesis of intestinal I/R injury have not been fully elucidated, it is generally believed that polymorphonuclear neutrophils, pro-inflammatory cytokines, and mediators generated in the setting of oxidative stress, such as reactive oxygen species (ROS), play important roles. Heme oxygenase (HO) is the rate-limiting enzyme that catalyzes the degradation of heme into equimolar quantities of biliverdin and carbon monoxide (CO), while the central iron is released. An inducible form of HO (HO-1), biliverdin, and CO, have been shown to possess generalized endogenous anti-inflammatory activities and provide protection against intestinal I/R injury. Further, recent observations have demonstrated that exogenous HO-1 expression, as well as exogenously administered CO and biliverdin, have potent cytoprotective effects on intestinal I/R injury as well. Here, we summarize the currently available data regarding the role of the HO system in the prevention intestinal I/R injury

    Bacteremia in Lung Transplant Recipients in the Current Era

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71409/1/j.1600-6143.2006.01565.x.pd

    Pretransplant gastroesophageal reflux compromises early outcomes after lung transplantation

    Get PDF
    ObjectivesGastroesophageal reflux disease (GERD) is implicated as a risk factor for bronchiolitis obliterans syndrome after lung transplantation, but its effects on acute rejection, early allograft function, and survival are unclear. Therefore, we sought to systematically understand the time-related impact of pretransplant GERD on graft function (spirometry), mortality, and acute rejection early after lung transplantation.MethodsFrom January 2005 to July 2008, 215 patients underwent lung transplantation; 114 had preoperative pH testing, and 32 (28%) had objective evidence of GERD. Lung function was assessed by forced 1-second expiratory volume (FEV1; percent of predicted) in 97 patients, mortality by follow-up (median, 2.2 years), and acute rejection by transbronchial biopsy.ResultsPretransplant GERD was associated with decreased FEV1 early after lung transplantation (P = .01) such that by 18 months, FEV1 was 70% of predicted in double lung transplant patients with GERD versus 83% among non-GERD patients (P = .05). A similar decrease was observed in single lung transplantation (50% vs 60%, respectively; P = .09). GERD patients had lower survival early after transplant ( P = .02)—75% versus 90%. Presence of GERD did not affect acute rejection (P = .6).ConclusionsFor lung transplant recipients, pretransplant GERD is associated with worse early allograft function and survival, but not increased acute rejection. The compromise in lung function is substantial, such that FEV1 after double lung transplant in GERD patients approaches that of single lung transplant in non-GERD patients. We advocate thorough testing for GERD before lung transplantation; if identified, aggressive therapy early after transplant, including fundoplication, may prove efficacious

    Kidney after nonrenal transplantation-the impact of alemtuzumab induction

    Get PDF
    BACKGROUND.: Calcineurin inhibitor nephrotoxicity in nonrenal allograft recipients can lead to end-stage renal disease and the need for kidney transplantation. We sought to evaluate the role of alemtuzumab induction in this population. PATIENTS AND METHODS.: We evaluated 144 patients undergoing kidney transplantation after nonrenal transplantation between May 18, 1998, and October 8, 2007. Seventy-two patients transplanted between January 15, 2003, and October 8, 2007, received alemtuzumab induction and continued their pretransplant immunosuppression. Seventy-two patients transplanted between May 18, 1998, and July 21, 2007, did not receive alemtuzumab induction, but received additional steroids and maintenance immunosuppression. Donor and recipient demographics were comparable. RESULTS.: Overall, 1-and 3-year patient survival and renal function were comparable between the two groups. One-and 3-year graft survival was 93.0% and 75.3% in the alemtuzumab group and 83.3% and 68.7% in the no alemtuzumab group, respectively (P=0.051). The incidence of acute rejection was lower in the alemtuzumab group, 15.3%, than in the no alemtuzumab group, 41.7% (P=0.0001). The incidence of delayed graft function was lower in the alemtuzumab group, 9.7%, than in the no alemtuzumab group, 25.0% (P=0.003). The incidence of viral complications was comparable. CONCLUSION.: Alemtuzumab induction with simple resumption of baseline immunosuppression in patients undergoing kidney transplantation after nonrenal transplantation represents a reasonable immunosuppressive strategy. Copyright © 2009 by Lippincott Williams & Wilkins

    Early outcomes in human lung transplantation with Thymoglobulin or Campath-1H for recipient pretreatment followed by posttransplant tacrolimus near-monotherapy

    Get PDF
    Objectives: Acute and chronic rejection remain unresolved problems after lung transplantation, despite heavy multidrug immunosuppression. In turn, the strong immunosuppression has been responsible for mortality and pervasive morbidity. It also has been postulated to interdict potential mechanisms of alloengraftment. Methods: In 48 lung recipients we applied 2 therapeutic principles: (1) recipient pretreatment with antilymphoid antibody preparations (Thymoglobulin [SangStat, Fremont, Calif] or Campath [alemtuzumab; manufactured by ILEX Pharmaceuticals, LP, San Antonio, Tex; distributed by Berlex Laboratories, Richmond, Calif]) and (2) minimal posttransplant immunosuppression with tacrolimus monotherapy or near-monotherapy. Our principal analysis was of the events during the critical first 6 posttransplant months of highest immunologic and infectious disease risk. Results were compared with those of 28 historical lung recipients treated with daclizumab induction and triple immunosuppression (tacrolimus-prednisone-azathioprine). Results: Recipient pretreatment with both antilymphoid preparations allowed the use of postoperative tacrolimus monotherapy with prevention or control of acute rejection. Freedom from rejection was significantly greater with Campath than with Thymoglobulin (P = .03) or daclizumab (P = .05). After lymphoid depletion with Thymoglobulin or Campath, patient and graft survival at 6 months was 90% or greater. Patient and graft survival after 9 to 24 months is 84.2% in the Thymoglobulin cohort, and after 10 to 12 months, it is 90% in the Campath cohort. There has been a subjective improvement in quality of life relative to our historical experience. Conclusion: Our results suggest that improvements in lung transplantation can be accomplished by altering the timing, dosage, and approach to immunosuppression in ways that might allow natural mechanisms of alloengraftment and diminish the magnitude of required maintenance immunosuppression. Copyright © 2005 by The American Association for Thoracic Surgery

    Effects of donor bone marrow infusion in clinical lung transplantation

    Get PDF
    Background. We have demonstrated that donor cell chimerism is associated with a lower incidence of obliterative bronchiolitis (OB) in lung recipients, and that donor chimerism is augmented by the infusion of donor bone marrow (BM). We herein report the intermediate results of a trial combining the infusion of donor BM and lung transplantation. Methods. Clinical and in vitro data of 26 lung recipients receiving concurrent infusion of donor bone marrow (3.0 to 6.0 x 108 cells/kg) were compared with those of 13 patients receiving lung transplant alone. Results. Patient survival and freedom from acute rejection were similar between groups. Of the patients whose graft survived greater than 4 months, 5% (1 of 22) of BM and 33% (4 of 12) of control patients, developed histologic evidence of OB (p = 0.04). A higher proportion (but not statistically significant) of BM recipients (7 of 10, 70%) exhibited donor-specific hyporeactivity by mixed lymphocyte reaction assays as compared with the controls (2 of 7, 28%). Conclusions. Infusion of donor BM at the time of lung transplantation is safe, and is associated with recipients' immune modulation and a lower rate of obliterative bronchiolitis. (C) 2000 by The Society of Thoracic Surgeons

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore