101 research outputs found

    A new catalog of photometric redshifts in the Hubble Deep Field

    Get PDF
    Using the newly available infrared images of the Hubble Deep Field in the J, H, and K bands and an optimal photometric method, we have refined a technique to estimate the redshifts of 1067 galaxies. A detailed comparison of our results with the spectroscopic redshifts in those cases where the latter are available shows that this technique gives very good results for bright enough objects (AB(8140) < 26.0). From a study of the distribution of residuals (Dz(rms)/(1+z) ~ 0.1 at all redshifts) we conclude that the observed errors are mainly due to cosmic variance. This very important result allows for the assessment of errors in quantities to be directly or indirectly measured from the catalog. We present some of the statistical properties of the ensemble of galaxies in the catalog, and finish by presenting a list of bright high-redshift (z ~ 5) candidates extracted from our catalog, together with recent spectroscopic redshift determinations confirming that two of them are at z=5.34 and z=5.60.Comment: 28 pages, 12PS+4JPEG figures, aaspp style. Accepted for publication in The Astrophysical Journal. The catalog, together with a clickable map of the HDF, Tables 4 and 5 (HTML, LaTeX or ASCII format), and the figures, are available at http://bat.phys.unsw.edu.au/~fsoto/hdfcat.htm

    The Ultraviolet Luminosity Density of the Universe from Photometric Redshifts of Galaxies in the Hubble Deep Field

    Get PDF
    Studies of the Hubble Deep Field (HDF) and other deep surveys have revealed an apparent peak in the ultraviolet (UV) luminosity density, and therefore the star-formation rate density, of the Universe at redshifts 1<z<2. We use photometric redshifts of galaxies in the HDF to determine the comoving UV luminosity density and find that, when errors (in particular, sampling error) are properly accounted for, a flat distribution is statistically indistinguishable from a distribution peaked at z~1.5. Furthermore, we examine the effects of cosmological surface brightness (SB) dimming on these measurements by applying a uniform SB cut to all galaxy fluxes after correcting them to redshift z=5. We find that, comparing all galaxies at the same intrinsic surface brightness sensitivity, the UV luminosity density contributed by high intrinsic SB regions increases by almost two orders of magnitude from z~0 to z~5. This suggests that there exists a population of objects with very high star formation rates at high redshifts that apparently do not exist at low redshifts. The peak of star formation, then, may occur somewhere beyond a redshift z~>5.Comment: 4 pages total, including 3 embedded figures, to appear in the proceedings of the Xth Rencontres de Blois, "The Birth of Galaxies." LaTeX style file include
    corecore