24 research outputs found

    Effect of microstructure on the internal hydriding behavior of uranium

    Get PDF
    Please click Additional Files below to see the full abstrac

    Controlled structure in artificial protein hydrogels

    No full text
    Small-angle X-ray scattering (SAXS) and circular dichroism (CD) were used to study the structure of artificial, multidomain protein hydrogels. Preliminary sedimentation equilibrium results indicate that the flanking leucine zipper domains used in the design of the artificial multidomain protein form tetrameric helical bundles. The leucine zipper domain alone precipitates at high concentrations (7% w/v) and near-neutral pH, but the multidomain protein remains soluble owing to a hydrophilic central domain. The resulting solution displays characteristic properties of physical gels. SAXS data from gels fit well to a cylindrical model with the following dimensions:  length 63 Å, radius 13.6 Å, and a 1 Å axial pore. These results match the dimensions of a tetrameric helical bundle and indicate that the low concentration equilibrium structure of the leucine zipper domain is maintained within the multidomain protein, even at high concentrations. Altogether, these results confirm a static picture of the gel structure where tetrameric self-associations of leucine zipper domains act as physical cross-links in the protein hydrogel

    Nanoprecipitation in a beta-titanium alloy

    Get PDF
    This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in β-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal ω can be induced by cold-rolling Gum metal, a β-Ti alloy. During thermal exposure at 400°C, isothermal ω particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6nm after thermal exposures up to 16h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the β matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy

    Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS).

    No full text
    Terrestrial nanoplastics (NPs) pose a serious threat to agricultural food production systems due to the potential harm of soil-born micro- and macroorganisms that promote soil fertility and ability of NPs to adsorb onto and penetrate into vegetables and other crops. Very little is known about the dispersion, fate and transport of NPs in soils. This is because of the challenges of analyzing terrestrial NPs by conventional microscopic techniques due to the low concentrations of NPs and absence of optical transparency in these systems. Herein, we investigate the potential utility of small-angle neutron scattering (SANS) and Ultra SANS (USANS) to probe the agglomeration behavior of NPs prepared from polybutyrate adipate terephthalate, a prominent biodegradable plastic used in agricultural mulching, in the presence of vermiculite, an artificial soil. SANS with the contrast matching technique was used to study the aggregation of NPs co-dispersed with vermiculite in aqueous media. We determined the contrast match point for vermiculite was 66% D2O / 33% H2O. At this condition, the signal for vermiculite was ~50-100%-fold lower that obtained using neat H2O or D2O as solvent. According to SANS and USANS, smaller-sized NPs (50 nm) remained dispersed in water and did not undergo size reduction or self-agglomeration, nor formed agglomerates with vermiculite. Larger-sized NPs (300-1000 nm) formed self-agglomerates and agglomerates with vermiculite, demonstrating their significant adhesion with soil. However, employment of convective transport (simulated by ex situ stirring of the slurries prior to SANS and USANS analyses) reduced the self-agglomeration, demonstrating weak NP-NP interactions. Convective transport also led to size reduction of the larger-sized NPs. Therefore, this study demonstrates the potential utility of SANS and USANS with contrast matching technique for investigating behavior of terrestrial NPs in complex soil systems

    Growth kinetics of lipid-based nanodiscs to unilamellar vesicles\u2014A time-resolved small angle neutron scattering (SANS) study

    No full text
    Mixtures of dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG) and dihexanoylphosphatidylcholine (DHPC) in aqueous solutions spontaneously form monodisperse, bilayered nanodiscs (also known as \u201cbicelles\u201d) at or below the melting transition temperature of DMPC (TM ~23 \ub0C). In dilute systems above the main transition temperature TM of DMPC, bicelles coalesce (increasing their diameter) and eventually self-fold into unilamellar vesicles (ULVs). Time-resolved small angle neutron scattering was used to study the growth kinetics of nanodiscs below and equal to TM over a period of hours as a function of temperature at two lipid concentrations in presence or absence of NaCl salt. Bicelles seem to undergo a sudden initial growth phase with increased temperature, which is then followed by a slower reaction-limited growth phase that depends on ionic strength, lipid concentration and temperature. The bicelle interaction energy was derived from the colloidal theory of Derjaguin and Landau, and Verwey and Overbeek (DLVO). While the calculated total energy between discs is attractive and proportional to their growth rate, a more detailed mechanism is proposed to describe the mechanism of disc coalescence. After annealing at low temperature (low-T), samples were heated to 50 \ub0C in order to promote the formation of ULVs. Although the low-T annealing of samples has only a marginal effect on the mean size of end-state ULVs, it does affect their polydispersity, which increases with increased T, presumably driven by the entropy of the system.Peer reviewed: YesNRC publication: Ye

    Mg 2+

    No full text
    corecore