966 research outputs found
Traceability for Food Safety and Quality Assurance: Mandatory Systems Miss the Mark
Traceability systems are record-keeping systems that are primarily used to help keep foods with different attributes separate from one another. When information about a particular attribute of a food product is systematically recorded from creation through marketing, traceability for that attribute is established. Recently, policy makers in many countries have begun weighing the usefulness of mandatory traceability for managing such diverse problems as the threat of bio-terrorism, country-of-origin labelling, mad cow disease, and identification of genetically engineered foods. The question before policymakers is, When is mandatory traceability a useful and appropriate policy choice?Agricultural and Food Policy, Food Consumption/Nutrition/Food Safety,
TRACEABILITY IN THE U.S. FOOD SUPPLY: ECONOMIC THEORY AND INDUSTRY STUDIES
This investigation into the traceability baseline in the United States finds that private sector food firms have developed a substantial capacity to trace. Traceability systems are a tool to help firms manage the flow of inputs and products to improve efficiency, product differentiation, food safety, and product quality. Firms balance the private costs and benefits of traceability to determine the efficient level of traceability. In cases of market failure, where the private sector supply of traceability is not socially optimal, the private sector has developed a number of mechanisms to correct the problem, including contracting, third-party safety/quality audits, and industry-maintained standards. The best-targeted government policies for strengthening firms' incentives to invest in traceability are aimed at ensuring that unsafe of falsely advertised foods are quickly removed from the system, while allowing firms the flexibility to determine the manner. Possible policy tools include timed recall standards, increased penalties for distribution of unsafe foods, and increased foodborne-illness surveillance.traceability, tracking, traceback, tracing, recall, supply-side management, food safety, product differentiation, Food Consumption/Nutrition/Food Safety, Industrial Organization,
Assessing the genetic diversity of rice originating from Bangladesh, Assam and West Bengal
Acknowledgements This work was funded by BBSRC research project BB/J00336/1. FS and a part of the proportion of the cost of the Illumina genotyping was funded by a Beachell-Borlag International Fellowship. The authors would like to acknowledge the help of Dr MK Sarmah in collecting seed samples of the landraces and improved cultivars from Assam used in this study and Dr. Ma. Elizabeth B. Naredo and Ms. Sheila Mae Q. Mercado for handling of IRGC accessions and preparation of DNAs for genotyping. All rice seeds used here were obtained with MTA agreements and seed and dry leaves imported into the UK under import licence IMP⁄SOIL⁄18⁄2009 issued by Science and Advice for Scottish Agriculture.Peer reviewedPublisher PD
Reproductive Capacity Evolves in Response to Ecology through Common Changes in Cell Number in Hawaiian Drosophila
© 2019 Elsevier Ltd Lifetime reproductive capacity is a critical fitness component. In insects, female reproductive capacity is largely determined by the number of ovarioles, the egg-producing subunits of the ovary [e.g., 1]. Recent work has provided insights into ovariole number regulation in Drosophila melanogaster. However, whether mechanisms discovered under laboratory conditions explain evolutionary variation in natural populations is an outstanding question. We investigated potential effects of ecology on the developmental processes underlying ovariole number evolution among Hawaiian Drosophila, a large adaptive radiation wherein the highest and lowest ovariole numbers of the family have evolved within 25 million years. Previous studies proposed that ovariole number correlated with oviposition substrate [2–4] but sampled largely one clade of these flies and were limited by a provisional phylogeny and the available comparative methods. We test this hypothesis by applying phylogenetic modeling to an expanded sampling of ovariole numbers and substrate types and show support for these predictions across all major groups of Hawaiian Drosophila, wherein ovariole number variation is best explained by adaptation to specific substrates. Furthermore, we show that oviposition substrate evolution is linked to changes in the allometric relationship between body size and ovariole number. Finally, we provide evidence that the major changes in ovarian cell number that regulate D. melanogaster ovariole number also regulate ovariole number in Hawaiian drosophilids. Thus, we provide evidence that this remarkable adaptive radiation is linked to evolutionary changes in a key reproductive trait regulated at least partly by variation in the same developmental parameters that operate in the model species D. melanogaster. Organisms leaving more offspring likely have higher fitness. Sarikaya et al. use the adaptive radiation of Hawaiian Drosophila to investigate the evolution of fecundity. They find that habitat shifts played a strong role and identify a developmental process that underlies evolutionary change in ovarian development and impacts egg-laying capacity
Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression
Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design,
data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies
Genome Wide Association mapping of grain and straw biomass traits in the rice Bengal and Assam Aus Panel (BAAP) grown under alternate wetting and drying and permanently flooded irrigation
The bulk of this work was supported by the Biotechnology and Biological Sciences Research Council mostly from project BB/J003336/1 while a small part of the work by AT was also supported by project BB/N013492/1 (NEWS-India-UK). PR-a is studying for a Ph.D. funded by the Thai Government.Peer reviewedPublisher PD
Bistability in Apoptosis by Receptor Clustering
Apoptosis is a highly regulated cell death mechanism involved in many
physiological processes. A key component of extrinsically activated apoptosis
is the death receptor Fas, which, on binding to its cognate ligand FasL,
oligomerize to form the death-inducing signaling complex. Motivated by recent
experimental data, we propose a mathematical model of death ligand-receptor
dynamics where FasL acts as a clustering agent for Fas, which form locally
stable signaling platforms through proximity-induced receptor interactions.
Significantly, the model exhibits hysteresis, providing an upstream mechanism
for bistability and robustness. At low receptor concentrations, the bistability
is contingent on the trimerism of FasL. Moreover, irreversible bistability,
representing a committed cell death decision, emerges at high concentrations,
which may be achieved through receptor pre-association or localization onto
membrane lipid rafts. Thus, our model provides a novel theory for these
observed biological phenomena within the unified context of bistability.
Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our
model also suggests a mechanism by which cells may function as bistable
life/death switches independently of any such dynamics in their downstream
components. Our results highlight the role of death receptors in deciding cell
fate and add to the signal processing capabilities attributed to receptor
clustering.Comment: Accepted by PLoS Comput Bio
Behavior of QQ-Plots and Genomic Control in Studies of Gene-Environment Interaction
Genome-wide association studies of gene-environment interaction (GxE GWAS) are becoming popular. As with main effects GWAS, quantile-quantile plots (QQ-plots) and Genomic Control are being used to assess and correct for population substructure. However, in GE work these approaches can be seriously misleading, as we illustrate; QQ-plots may give strong indications of substructure when absolutely none is present. Using simulation and theory, we show how and why spurious QQ-plot inflation occurs in GE GWAS, and how this differs from main-effects analyses. We also explain how simple adjustments to standard regression-based methods used in GE GWAS can alleviate this problem
Measuring Organizational Power: Resources and Autonomy of Government Agencies
Although power is a major concern of organization theory, little research has focused on the horizontal dimension of power between organizations at relatively equal hierarchical levels. This study attempts to fill that void by operationalizing organizational power for 127 federal government agencies. The derived measure is subjected to tests for internal and external validity by empirically testing one promising theory of agency power.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice.
BACKGROUND: Escherichia coli are widespread in the environment and pathogenic strains cause diseases of mucosal surfaces including the female genital tract. Pelvic inflammatory disease (PID; metritis) or endometritis affects ∼40% of cattle after parturition. We tested the expectation that multiple genetically diverse E. coli from the environment opportunistically contaminate the uterine lumen after parturition to establish PID. METHODOLOGY/PRINCIPAL FINDINGS: Distinct clonal groups of E. coli were identified by Random Amplification of Polymorphic DNA (RAPD) and Multilocus sequence typing (MLST) from animals with uterine disease and these differed from known diarrhoeic or extra-intestinal pathogenic E. coli. The endometrial pathogenic E. coli (EnPEC) were more adherent and invasive for endometrial epithelial and stromal cells, compared with E. coli isolated from the uterus of clinically unaffected animals. The endometrial epithelial and stromal cells produced more prostaglandin E(2) and interleukin-8 in response to lipopolysaccharide (LPS) purified from EnPEC compared with non-pathogenic E. coli. The EnPEC or their LPS also caused PID when infused into the uterus of mice with accumulation of neutrophils and macrophages in the endometrium. Infusion of EnPEC was only associated with bacterial invasion of the endometrium and myometrium. Despite their ability to invade cultured cells, elicit host cell responses and establish PID, EnPEC lacked sixteen genes commonly associated with adhesion and invasion by enteric or extraintestinal pathogenic E. coli, though the ferric yersiniabactin uptake gene (fyuA) was present in PID-associated EnPEC. Endometrial epithelial or stromal cells from wild type but not Toll-like receptor 4 (TLR4) null mice secreted prostaglandin E(2) and chemokine (C-X-C motif) ligand 1 (CXCL1) in response to LPS from EnPEC, highlighting the key role of LPS in PID. CONCLUSIONS/SIGNIFICANCE: The implication arising from the discovery of EnPEC is that development of treatments or vaccines for PID should focus specifically on EnPEC and not other strains of E. coli
- …