54 research outputs found

    Comparative Proteomic Analysis of Lung Lamellar Bodies and Lysosome-Related Organelles

    Get PDF
    Pulmonary surfactant is a complex mixture of lipids and proteins that is essential for postnatal function. Surfactant is synthesized in alveolar type II cells and stored as multi-bilayer membranes in a specialized secretory lysosome-related organelle (LRO), known as the lamellar body (LB), prior to secretion into the alveolar airspaces. Few LB proteins have been identified and the mechanisms regulating formation and trafficking of this organelle are poorly understood. Lamellar bodies were isolated from rat lungs, separated into limiting membrane and core populations, fractionated by SDS-PAGE and proteins identified by nanoLC-tandem mass spectrometry. In total 562 proteins were identified, significantly extending a previous study that identified 44 proteins in rat lung LB. The lung LB proteome reflects the dynamic interaction of this organelle with the biosynthetic, secretory and endocytic pathways of the type II epithelial cell. Comparison with other LRO proteomes indicated that 60% of LB proteins were detected in one or more of 8 other proteomes, confirming classification of the LB as a LRO. Remarkably the LB shared 37.8% of its proteins with the melanosome but only 9.9% with lamellar bodies from the skin. Of the 229 proteins not detected in other LRO proteomes, a subset of 34 proteins was enriched in lung relative to other tissues. Proteins with lipid-related functions comprised a significant proportion of the LB unique subset, consistent with the major function of this organelle in the organization, storage and secretion of surfactant lipid. The lung LB proteome will facilitate identification of molecular pathways involved in LB biogenesis, surfactant homeostasis and disease pathogenesis

    Domain unfolding of monoclonal antibody fragments revealed by non-reducing SDS-PAGE

    No full text
    Monoclonal antibodies and derived fragments are used extensively both experimentally and therapeutically. Thorough characterization of such antibodies is necessary and includes assessment of their thermal and storage stabilities. Thus, assessment of the underlying conformational stabilities of the antibodies is also important. We recently documented that non-reducing SDS-PAGE can be used to assess both monoclonal and polyclonal IgG domain thermal unfolding in SDS. Utilizing this same h2E2 anti-cocaine mAb, in this study we generated and analyzed various mAb antibody fragments to delineate the structural domains of the antibody responsible for the observed discrete bands following various heating protocols and analysis by non-reducing SDS-PAGE. Previously, these domain unfolding transitions and gel bands were hypothesized to stem from known mAb structural domains based on the relative thermal stability of those CH2, CH3, and Fab domains in the absence of SDS, as measured by differential scanning calorimetry. In this study, we generated and analyzed F(ab’)2, Fab, and Fc fragments, as well as a mAb consisting of only heavy chains, and examined the thermally induced domain unfolding in each of these fragments by non-reducing SDS-PAGE. The results were interpreted and integrated to generate an improved model of thermal unfolding for the mAb IgG in SDS. These results and the model presented should be generally applicable to many monoclonal and polyclonal antibodies and allow novel comparisons of conformational stabilities between chemically or genetically modified versions of a given antibody. Such modified antibodies and antibody drug conjugates are commonly utilized and important for experimental and therapeutic applications. Keywords: Monoclonal antibody, Antibody fragments, Non-reducing SDS-PAGE, Antibody analysis, Electrophoretic migration, Antibody domain unfoldin

    Identification of Urinary CD44 and Prosaposin as Specific Biomarkers of Urinary Tract Infections in Children With Neurogenic Bladders

    No full text
    Purpose: Distinguishing urinary tract infection (UTI) from urinary tract colonization (UTC) in children with neurogenic bladders who require clean intermittent catheterization (CIC) is challenging. Our objective was to identify urinary proteins to distinguish UTI from UTC in CIC-dependent children that have potential to serve as objective markers of UTI. Experimental design: A total of 10 CIC-dependent children were included in the mass spectrometry analysis (UTI = 5, UTC = 5). Quantitative profiling of urine proteins with isobaric protein labeling was performed using tandem mass spectrometry. Candidate markers were normalized using a collective mixture of proteins from all samples. Relative quantitative abundance of proteins across all samples were compared. Proteins with >50% change in the average abundance were identified as proteins of interest, which were then measured using enzyme-linked immunosorbent assay (ELISA) in an additional 40 samples (no growth = 10, UTC = 15, UTI = 15). Results: Mass spectrometry revealed 8 differentially expressed proteins. Of these, apolipoprotein D, alpha-amylase 2B, non-secretory ribonuclease, CD44 antigen, and prosaposin were measurable by ELISA. Concentrations of both CD44 and prosaposin were significantly higher in UTI, with area under the curves (AUCs) of 0.72 and 0.78, respectively. Conclusion: Urinary CD44 and prosaposin are candidate markers that may assist with the diagnosis of UTI in CIC-dependent children
    • …
    corecore