839 research outputs found
Renormalization group maps for Ising models in lattice gas variables
Real space renormalization group maps, e.g., the majority rule
transformation, map Ising type models to Ising type models on a coarser
lattice. We show that each coefficient of the renormalized Hamiltonian in the
lattice gas variables depends on only a finite number of values of the
renormalized Hamiltonian. We introduce a method which computes the values of
the renormalized Hamiltonian with high accuracy and so computes the
coefficients in the lattice gas variables with high accuracy. For the critical
nearest neighbor Ising model on the square lattice with the majority rule
transformation, we compute over 1,000 different coefficients in the lattice gas
variable representation of the renormalized Hamiltonian and study the decay of
these coefficients. We find that they decay exponentially in some sense but
with a slow decay rate. We also show that the coefficients in the spin
variables are sensitive to the truncation method used to compute them.Comment: 22 pages, 9 color postscript figures; minor revisions in version
The Kentucky Noisy Monte Carlo Algorithm for Wilson Dynamical Fermions
We develop an implementation for a recently proposed Noisy Monte Carlo
approach to the simulation of lattice QCD with dynamical fermions by
incorporating the full fermion determinant directly. Our algorithm uses a
quenched gauge field update with a shifted gauge coupling to minimize
fluctuations in the trace log of the Wilson Dirac matrix. The details of tuning
the gauge coupling shift as well as results for the distribution of noisy
estimators in our implementation are given. We present data for some basic
observables from the noisy method, as well as acceptance rate information and
discuss potential autocorrelation and sign violation effects. Both the results
and the efficiency of the algorithm are compared against those of Hybrid Monte
Carlo.
PACS Numbers: 12.38.Gc, 11.15.Ha, 02.70.Uu Keywords: Noisy Monte Carlo,
Lattice QCD, Determinant, Finite Density, QCDSPComment: 30 pages, 6 figure
Continuity theorems for the queueing system
In this paper continuity theorems are established for the number of losses
during a busy period of the queue. We consider an queueing
system where the service time probability distribution, slightly different in a
certain sense from the exponential distribution, is approximated by that
exponential distribution. Continuity theorems are obtained in the form of one
or two-sided stochastic inequalities. The paper shows how the bounds of these
inequalities are changed if further assumptions, associated with specific
properties of the service time distribution (precisely described in the paper),
are made. Specifically, some parametric families of service time distributions
are discussed, and the paper establishes uniform estimates (given for all
possible values of the parameter) and local estimates (where the parameter is
fixed and takes only the given value). The analysis of the paper is based on
the level crossing approach and some characterization properties of the
exponential distribution.Comment: Final revision; will be published as i
Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems
Gapped ground states of quantum spin systems have been referred to in the
physics literature as being `in the same phase' if there exists a family of
Hamiltonians H(s), with finite range interactions depending continuously on , such that for each , H(s) has a non-vanishing gap above its
ground state and with the two initial states being the ground states of H(0)
and H(1), respectively. In this work, we give precise conditions under which
any two gapped ground states of a given quantum spin system that 'belong to the
same phase' are automorphically equivalent and show that this equivalence can
be implemented as a flow generated by an -dependent interaction which decays
faster than any power law (in fact, almost exponentially). The flow is
constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we
give a proof extended to infinite-dimensional Hilbert spaces. In addition, we
derive a general result about the locality properties of the effect of
perturbations of the dynamics for quantum systems with a quasi-local structure
and prove that the flow, which we call the {\em spectral flow}, connecting the
gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a
result, we obtain that, in the thermodynamic limit, the spectral flow converges
to a co-cycle of automorphisms of the algebra of quasi-local observables of the
infinite spin system. This proves that the ground state phase structure is
preserved along the curve of models .Comment: Updated acknowledgments and new email address of S
Optimal designs for rational function regression
We consider optimal non-sequential designs for a large class of (linear and
nonlinear) regression models involving polynomials and rational functions with
heteroscedastic noise also given by a polynomial or rational weight function.
The proposed method treats D-, E-, A-, and -optimal designs in a
unified manner, and generates a polynomial whose zeros are the support points
of the optimal approximate design, generalizing a number of previously known
results of the same flavor. The method is based on a mathematical optimization
model that can incorporate various criteria of optimality and can be solved
efficiently by well established numerical optimization methods. In contrast to
previous optimization-based methods proposed for similar design problems, it
also has theoretical guarantee of its algorithmic efficiency; in fact, the
running times of all numerical examples considered in the paper are negligible.
The stability of the method is demonstrated in an example involving high degree
polynomials. After discussing linear models, applications for finding locally
optimal designs for nonlinear regression models involving rational functions
are presented, then extensions to robust regression designs, and trigonometric
regression are shown. As a corollary, an upper bound on the size of the support
set of the minimally-supported optimal designs is also found. The method is of
considerable practical importance, with the potential for instance to impact
design software development. Further study of the optimality conditions of the
main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory
and additional example
Quantum spin systems at positive temperature
We develop a novel approach to phase transitions in quantum spin models based
on a relation to their classical counterparts. Explicitly, we show that
whenever chessboard estimates can be used to prove a phase transition in the
classical model, the corresponding quantum model will have a similar phase
transition, provided the inverse temperature and the magnitude of the
quantum spins \CalS satisfy \beta\ll\sqrt\CalS. From the quantum system we
require that it is reflection positive and that it has a meaningful classical
limit; the core technical estimate may be described as an extension of the
Berezin-Lieb inequalities down to the level of matrix elements. The general
theory is applied to prove phase transitions in various quantum spin systems
with \CalS\gg1. The most notable examples are the quantum orbital-compass
model on and the quantum 120-degree model on which are shown to
exhibit symmetry breaking at low-temperatures despite the infinite degeneracy
of their (classical) ground state.Comment: 47 pages, version to appear in CMP (style files included
Exact spectra, spin susceptibilities and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice
Exact spectra of periodic samples are computed up to .
Evidence of an extensive set of low lying levels, lower than the softest
magnons, is exhibited.
These low lying quantum states are degenerated in the thermodynamic limit;
their symmetries and dynamics as well as their finite-size scaling are strong
arguments in favor of N\'eel order.
It is shown that the N\'eel order parameter agrees with first-order spin-wave
calculations. A simple explanation of the low energy dynamics is given as well
as the numerical determinations of the energies, order parameter and spin
susceptibilities of the studied samples. It is shown how suitable boundary
conditions, which do not frustrate N\'eel order, allow the study of samples
with spins.
A thorough study of these situations is done in parallel with the more
conventional case .Comment: 36 pages, REVTeX 3.0, 13 figures available upon request, LPTL
preprin
Entanglement and Density Matrix of a Block of Spins in AKLT Model
We study a 1-dimensional AKLT spin chain, consisting of spins in the bulk
and at both ends. The unique ground state of this AKLT model is described
by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a
contiguous block of bulk spins in this ground state. It is shown that the
density matrix is a projector onto a subspace of dimension . This
subspace is described by non-zero eigenvalues and corresponding eigenvectors of
the density matrix. We prove that for large block the von Neumann entropy
coincides with Renyi entropy and is equal to .Comment: Revised version, typos corrected, references added, 31 page
CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus
Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV
- …