5,980 research outputs found
Lithium and aluminium carbamato derivatives of the utility amide 2, 2, 6, 6- tetramethylpiperidide
Insertion of CO2 into the metal-N bond of a series of synthetically-important alkali-metal TMP (2,2,6,6-tetramethylpiperidide) complexes has been studied. Determined by X-ray crystallography, the molecular structure of the TMEDA-solvated Li derivative shows a central 8-membered (LiOCO)2 ring lying in a chair conformation with distorted tetrahedral lithium centres. While trying to obtain crystals of a THF solvated derivative, a mixed carbonato/carbamato dodecanuclear lithium cluster was formed containing two central (CO3)2- fragments and eight O2CTMP ligands with four distinct bonding modes. A bisalkylaluminium carbamato complex has also been prepared via two different methods (CO2 insertion into a pre-formed Al-N bond and ligand transfer from the corresponding lithium reagent) which adopts a dimeric structure in the solid state
Effects of isopropanol on collagen fibrils in new parchment
Background: Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results: It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions: This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts
The 2021 western North America heat wave among the most extreme events ever recorded globally
This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: ERA5 dataset is available from the Copernicus Climate Change Service (C3S) Climate Data Store. JRA55 dataset is available from the JRA project webpage. CanESM5 data are available from CMIP6 search interface, https://esgf-node.llnl.gov/search/cmip6/. GHCNd station data are available from NOAA Climate Data Online. The code used to generate the figures in this paper and the Supplementary Materials is available from https://zenodo.org/record/6325508 or https://github.com/BrisClim, and this can be used to rapidly assess the extremeness of heat waves relative to other events globally. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.In June 2021, western North America experienced a record-breaking heat wave outside the distribution of previously observed temperatures. While it is clear that the event was extreme, it is not obvious whether other areas in the world have also experienced events so far outside their natural variability. Using a novel assessment of heat extremes, we investigate how extreme this event was in the global context. Characterizing the relative intensity of an event as the number of standard deviations from the mean, the western North America heat wave is remarkable, coming in at over four standard deviations. Throughout the globe, where we have reliable data, only five other heat waves were found to be more extreme since 1960. We find that in both reanalyses and climate projections, the statistical distribution of extremes increases through time, in line with the distribution mean shift due to climate change. Regions that, by chance, have not had a recent extreme heat wave may be less prepared for potentially imminent events.Natural Environment Research Council (NERC
Dynamical quantum noise in Bose-Einstein condensates
We introduce the study of dynamical quantum noise in Bose-Einstein
condensates through numerical simulation of stochastic partial differential
equations obtained using phase space representations. We derive evolution
equations for a single trapped condensate in both the positive- and Wigner
representations, and perform simulations to compare the predictions of the two
methods. The positive- approach is found to be highly susceptible to the
stability problems that have been observed in other strongly nonlinear, weakly
damped systems. Using the Wigner representation, we examine the evolution of
several quantities of interest using from a variety of choices of initial state
for the condensate, and compare results to those for single-mode models.Comment: 8 figures, submitted to Phys. Rev.
Semiparametric theory and empirical processes in causal inference
In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a
brief introduction to the general problem of causal inference, and go on to
discuss estimation and inference for causal effects under semiparametric
models, which allow parts of the data-generating process to be unrestricted if
they are not of particular interest (i.e., nuisance functions). These models
are very useful in causal problems because the outcome process is often complex
and difficult to model, and there may only be information available about the
treatment process (at best). Semiparametric theory gives a framework for
benchmarking efficiency and constructing estimators in such settings. In the
second part of the paper we discuss empirical process theory, which provides
powerful tools for understanding the asymptotic behavior of semiparametric
estimators that depend on flexible nonparametric estimators of nuisance
functions. These tools are crucial for incorporating machine learning and other
modern methods into causal inference analyses. We conclude by examining related
extensions and future directions for work in semiparametric causal inference
'To live and die [for] Dixie': Irish civilians and the Confederate States of America
Around 20,000 Irishmen served in the Confederate army in the Civil War. As a result, they left behind, in various Southern towns and cities, large numbers of friends, family, and community leaders. As with native-born Confederates, Irish civilian support was crucial to Irish participation in the Confederate military effort. Also, Irish civilians served in various supporting roles: in factories and hospitals, on railroads and diplomatic missions, and as boosters for the cause. They also, however, suffered in bombardments, sieges, and the blockade. Usually poorer than their native neighbours, they could not afford to become 'refugees' and move away from the centres of conflict. This essay, based on research from manuscript collections, contemporary newspapers, British Consular records, and Federal military records, will examine the role of Irish civilians in the Confederacy, and assess the role this activity had on their integration into Southern communities. It will also look at Irish civilians in the defeat of the Confederacy, particularly when they came under Union occupation. Initial research shows that Irish civilians were not as upset as other whites in the South about Union victory. They welcomed a return to normalcy, and often 'collaborated' with Union authorities. Also, Irish desertion rates in the Confederate army were particularly high, and I will attempt to gauge whether Irish civilians played a role in this. All of the research in this paper will thus be put in the context of the Drew Gilpin Faust/Gary Gallagher debate on the influence of the Confederate homefront on military performance. By studying the Irish civilian experience one can assess how strong the Confederate national experiment was. Was it a nation without a nationalism
The VLT-FLAMES Tarantula Survey XVIII. Classifications and radial velocities of the B-type stars
We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 kms-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 kms-1) or small (≤65 kms-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (−106.9 ± 16.2 kms-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (ve sin i = 345 ± 22 kms-1), this is suggestive of past binary interaction for this star
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
- …