18 research outputs found

    Ground State of a Spin System with Two- and Four-spin Exchange Interactions on the Triangular Lattice

    Full text link
    We study a spin system with both two- and four-spin exchange interactions on the triangular lattice as a possible model for the nuclear magnetism of solid 3^3He layers adsorbed on grafoil. The ground state is analyzed by the use of the mean-field approximation. It is shown that the four-sublattice state is favored by introduction of the four-spin exchange interaction. A possible phase transition at a finite temperature into a phase with the scalar chirality is predicted. Application of a magnetic field is shown to cause a variety of phase transitions.Comment: 5 pages, Revte

    Vortex generation in the RSP game on the triangular lattice

    Full text link
    A new model of population dynamics on lattices is proposed. The model consists of players on lattice points, each of which plays the RSP game with neighboring players. Each player copies the next hand from the hand of the neighbouring player with the maximum point. The model exhibits a steady pattern with pairs of vortices and sinks on the triangular lattice. It is shown that the stationary vortex is due to the frustrations on the triangular lattice. A frustration is the three-sided situation where each of the three players around a triangle chooses the rock, the scissors and the paper, respectively

    Topological phase separation in 2D quantum lattice Bose-Hubbard system away from half-filling

    Full text link
    We suppose that the doping of the 2D hard-core boson system away from half-filling may result in the formation of multi-center topological inhomogeneity (defect) such as charge order (CO) bubble domain(s) with Bose superfluid (BS) and extra bosons both localized in domain wall(s), or a {\it topological} CO+BS {\it phase separation}, rather than an uniform mixed CO+BS supersolid phase. Starting from the classical model we predict the properties of the respective quantum system. The long-wavelength behavior of the system is believed to remind that of granular superconductors, CDW materials, Wigner crystals, and multi-skyrmion system akin in a quantum Hall ferromagnetic state of a 2D electron gas. To elucidate the role played by quantum effects and that of the lattice discreteness we have addressed the simplest nanoscopic counterpart of the bubble domain in a checkerboard CO phase of 2D hc-BH square lattice. It is shown that the relative magnitude and symmetry of multi-component order parameter are mainly determined by the sign of the nnnn and nnnnnn transfer integrals. In general, the topologically inhomogeneous phase of the hc-BH system away from the half-filling can exhibit the signatures both of s,ds,d, and pp symmetry of the off-diagonal order.Comment: 12 pages, 6 figure

    Mechanism of carrier-induced ferromagnetism in magnetic semiconductors

    Full text link
    Taking into account both random impurity distribution and thermal fluctuations of localized spins, we have performed a model calculation for the carrier (hole) state in Ga1−x_{1-x}Mnx_xAs by using the coherent potential approximation (CPA). The result reveals that a {\it p}-hole in the band tail of Ga1−x_{1-x}Mnx_xAs is not like a free carrier but is rather virtually bounded to impurity sites. The carrier spin strongly couples to the localized {\it d} spins on Mn ions. The hopping of the carrier among Mn sites causes the ferromagnetic ordering of the localized spins through the double-exchange mechanism. The Curie temperature obtained by using conventional parameters agrees well with the experimental result.Comment: 7 pages, 4 figure

    Magnetization plateau in a two-dimensional multiple-spin exchange model

    Full text link
    We study a multiple-spin exchange model on a triangular lattice, which is a possible model for low-density solid 3He films. Due to strong competitions between ferromagnetic three-spin exchange and antiferromagnetic four-spin one, the ground states are highly degenerate in the classical limit. At least 2^{L/2}-fold degeneracy exists on the L*L triangular lattice except for the SO(3) symmetry. In the magnetization process, we found a plateau at m/m_{sat}=1/2, in which the ground state is "uuud state" (a collinear state with four sublattices). The 1/2-plateau appears due to the strong four-spin exchange interaction. This plateau survives against both quantum and thermal fluctuations. Under a magnetic field which realizes the "uuud" ordered state, a phase transition occurs at a finite temperature. We predict that low-density solid 3He thin films may show the 1/2-plateau in the magnetization process. Experimental observation of the plateau will verify strength of the four-spin exchange. It is also discussed that this magnetization plateau can be understood as an insulating-conducting transition in a particle picture.Comment: 10 pages, RevTeX, 12 figures, added a reference and corrected typos, to be published in Phys.Rev.B (01 APR 99
    corecore