22 research outputs found

    Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes.</p> <p>Methods</p> <p>Male Sprague-Dawley rats (6 weeks old) were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days) to induce diabetes. Nicorandil (15 mg/kg/day) and tempol (20 mg/kg/day, superoxide dismutase mimetic) were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD) in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs) were treated with high glucose (35.6 mM, 24 h) and reactive oxygen species (ROS) production with or without L-NAME (300 μM), apocynin (100 μM) or nicorandil (100 μM) was measured using fluorescent probes.</p> <p>Results</p> <p>Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; <it>n </it>= 6-7). There was a 2.4-fold increase in p47<sup>phox </sup>expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; <it>n </it>= 6). Nicorandil significantly inhibited the increased expressions of p47<sup>phox </sup>and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil suggesting that eNOS itself might serve as a superoxide source under high-glucose conditions and that nicorandil might prevent ROS production from eNOS.</p> <p>Conclusions</p> <p>These results suggest that nicorandil improved diabetes-induced endothelial dysfunction through antioxidative effects by inhibiting NADPH oxidase and eNOS uncoupling.</p

    SNAIL2 contributes to tumorigenicity and chemotherapy resistance in pancreatic cancer by regulating IGFBP2

    Get PDF
    Pancreatic cancer has an extremely poor prognosis because of its resistance to conventional therapies. Cancer stem cell (CSC)-targeted therapy is considered a promising approach for this disease. Epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) contribute to CSC properties in some solid tumors; however, this mechanism has not been fully elucidated in pancreatic cancer. Zinc finger protein, SNAIL2 (also known as SLUG), is a member of the SNAIL superfamily of EMT-TFs and is commonly overexpressed in pancreatic cancer. Patients exhibiting high SNAIL2 expression have a poor prognosis. In this study, we showed that the suppression of SNAIL2 expression using RNA interference decreased tumorigenicity in vitro (sphere formation assay) and in vivo (xenograft assay) in 2 pancreatic cancer cell lines, KLM1 and KMP5. In addition, SNAIL2 suppression resulted in increased sensitivity to gemcitabine and reduced the expression of CD44, a pancreatic CSC marker. Moreover, experiments on tumor spheroids established from surgically resected pancreatic cancer tissues yielded similar results. A microarray analysis revealed that the mechanism was mediated by insulin-like growth factor (IGF) binding protein 2. These results indicate that IGFBP2 regulated by SNAIL2 may represent an effective therapeutic target for pancreatic cancer

    Assessing drug target suitability using TargetMine [version 1; peer review: 2 approved]

    Get PDF
    In selecting drug target candidates for pharmaceutical research, the linkage to disease and the tractability of the target are two important factors that can ultimately determine the drug efficacy. Several existing resources can provide gene-disease associations, but determining whether such a list of genes are attractive drug targets often requires further information gathering and analysis. In addition, few resources provide the information required to evaluate the tractability of a target. To address these issues, we have updated TargetMine, a data warehouse for assisting target prioritization, by integrating new data sources for gene-disease associations and enhancing functionalities for target assessment. As a data mining platform that integrates a variety of data sources, including protein structures and chemical compounds, TargetMine now offers a powerful and flexible interface for constructing queries to check genetic evidence, tractability and other relevant features for the candidate genes. We demonstrate these features by using several specific examples

    EMT関連因子SNAILは、2つの遺伝子CCN3 およびNEFLを通 じて胃発癌を制御する

    No full text
    Among cancer cells, there are specific cell populations of whose activities are comparable to those of stem cells in normal tissues, and for whom the levels of cell dedifferentiation are reported to correlate with poor prognosis. Information concerning the mechanisms that modulate the stemness like traits of cancer cells is limited. Therefore, we examined five gastric cancer cell lines and isolated gastric oncospheres from three gastric cancer cell lines. The gastric cancer cells that expanded in the spheres expressed relatively elevated proportion of CD44, which is a marker of gastric cancer stem cells (CSCs), and displayed many properties of CSCs, for example: chemoresistance, tumorigenicity and epithelial–mesenchymal transition (EMT) acquisition. SNAIL, which is a key factor in EMT, was highly expressed in the gastric spheres. Microarray analysis in gastric cancer cell line HGC27 showed that CCN3 and NEFL displayed the greatest differential expression by knocking down of SNAIL; the former was upregulated and the latter downregulated, respectively. Downregulation of CCN3 and upregulation of NEFL gene expression impaired the SNAIL-dependent EMT activity: high tumorigenicity, and chemoresistance in gastric cancer cells. Thus, approach that disrupts SNAIL/CCN3/NEFL axis may be credible in inhibiting gastric cancer development
    corecore