3 research outputs found

    MRP3: a molecular target for human glioblastoma multiforme immunotherapy.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3).</p> <p>Methods</p> <p>We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS.</p> <p>Results</p> <p>Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed <it>MRP3 </it>mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined <it>MRP3</it>-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of <it>MRP3 </it>RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002).</p> <p>Conclusions</p> <p>Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.</p

    Whole-Genome Sequencing of 84 Japanese Eels Reveals Evidence against Panmixia and Support for Sympatric Speciation

    No full text
    The Japanese eel (Anguilla japonica), European eel (Anguilla anguilla), and American eel (Anguilla rostrata) are migratory, catadromous, temperate zone fish sharing several common life cycle features. The population genetics of panmixia in these eel species has already been investigated. Our extensive population genetics analysis was based on 1400 Gb of whole-genome sequence (WGS) data from 84 eels. It demonstrated that a Japanese eel group from the Kuma River differed from other populations of the same species. Even after removing the potential adapted/selected single nucleotide polymorphism (SNP) data, and with very small differences (fixation index [Fst] = 0.01), we obtained results consistently indicating that panmixia does not occur in Japanese eels. The life cycle of the Japanese eel is well-established and the Kuma River is in the center of its habitat. Nevertheless, simple reproductive isolation is not the probable cause of non-panmixia in this species. We propose that the combination of spawning area subdivision, philopatry, and habitat preference/avoidance accounts for the non-panmixia in the Japanese eel population. We named this hypothesis the &ldquo;reproductive isolation like subset mapping&rdquo; (RISM) model. This finding may be indicative of the initial stages of sympatric speciation in these eels
    corecore