2 research outputs found

    THE ROAD LESS TRAVELLED: UTILIZATION OF FORMATE IN TWO BIOCHEMICAL REACTIONS IN GRAM-NEGATIVE BACTERIA

    Get PDF
    Formate is an important intermediate in a number of metabolic reactions. Most of the formate pool in cells is generated from the degradation of primary metabolites (glucose, pyruvate, amino acids) and further degraded into CO2 and CH4. Remaining formate is recycled and utilized in one-carbon metabolism where a one-carbon formyl group is integrated into nucleotide metabolism, protein synthesis, and generation of secondary metabolites such as siderophores. Here I provide two examples of distinct and unique enzymes involved in formate generation and metabolism: PvdF from Pseudomonas aeruginosa and RibB from Vibrio Cholerae. PvdF is one of two enzymes involved in generation of the formyl-hydroxyornithine (fOHOrn) moiety responsible for iron chelation in pyoverdin, a siderophore in Pseudomonas aeruginosa. Biochemical and structural studies suggest that PvdF is a unique new class of transformylase enzyme. PvdF catalyzes the movement of the formyl group from an N10 formyl-THF analogue to the substrate following the bireactant random substrate binding model. Structurally, PvdF has a transformylase fold with secondary structural element insertion so far unprecedented in the literature. RibB is involved in the biosynthesis of riboflavin, vitamin B2. This is a magnesium dependent enzyme that catalyzes the conversion of the sugar ribulose 5-phosphate (Ru5P), a product of the pentose phosphate pathway, into 3,4-dihydroxy-2-butanone 4-phosphate (DHBP). The reaction catalyzed by RibB is an unusual deformylation reaction in which the fourth carbon of the five-carbon sugar is removed as formate. According to the literature, RibB catalyzes this reaction in the presence of di-metal Mg2+ centers following 1,2-methyl shift, called a skeletal rearrangement mechanism. Our evidence, both biochemical and structural, suggests that RibB requires only one Mg2+ for catalysis. Furthermore, NMR and X-ray crystallography data point toward the formation of a 2-phosphoglycolic acid intermediate during RibB catalyzed reaction. These data suggest that a fragmentation mechanism, not a skeletal rearrangement, is the preferred mechanism of RibB catalysis

    Variants of the human RAD52 gene confer defects in ionizing radiation resistance and homologous recombination repair in budding yeast

    Get PDF
    RAD52 is a structurally and functionally conserved component of the DNA double-strand break (DSB) repair apparatus from budding yeast to humans. We recently showed that expressing the human gene, HsRAD52 in rad52 mutant budding yeast cells can suppress both their ionizing radiation (IR) sensitivity and homologous recombination repair (HRR) defects. Intriguingly, we observed that HsRAD52 supports DSB repair by a mechanism of HRR that conserves genome structure and is independent of the canonical HR machinery. In this study we report that naturally occurring variants of HsRAD52, one of which suppresses the pathogenicity of BRCA2 mutations, were unable to suppress the IR sensitivity and HRR defects of rad52 mutant yeast cells, but fully suppressed a defect in DSB repair by single-strand annealing (SSA). This failure to suppress both IR sensitivity and the HRR defect correlated with an inability of HsRAD52 protein to associate with and drive an interaction between genomic sequences during DSB repair by HRR. These results suggest that HsRAD52 supports multiple, distinct DSB repair apparatuses in budding yeast cells and help further define its mechanism of action in HRR. They also imply that disruption of HsRAD52-dependent HRR in BRCA2-defective human cells may contribute to protection against tumorigenesis and provide a target for killing BRCA2-defective cancers
    corecore