6 research outputs found

    Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions

    No full text
    Hydroponics is a farming technique for growing plants with mineral nutrients using a soil-free medium. The plant roots are submerged in soil-free media, such as vermiculite or perlite, or just in mineral nutrient solutions. This allows for high production yields throughout the year with less water and agro-chemical inputs. Consequently, hydroponics is considered a sustainable agriculture technology. Hydroponically grown crops are usually protected from the diseases transmitted through soil or animals in open fields. Therefore, they require fewer chemicals for pest control and are safer than conventionally grown crops in terms of possible chemical contamination. Nevertheless, hydroponics guarantees neither plant health nor the microbial safety of fresh produce. In the case of microbial contamination by human pathogens, unlike soil-grown crops, the pathogens may rapidly spread through the circulating water and simultaneously infect all the plants in the facility. This review summarizes the up-to-date knowledge regarding the microbial safety of hydroponically grown crops and discusses the role of the hydroponic system in reducing the microbial hazards for leafy and fruity crops as well as the potential risks for contamination by human pathogens. Finally, it outlines the approaches and the available science-based practices to ensure produce safety. The contamination risk in hydroponic systems may be diminished by using novel planting materials and the appropriate decontamination treatment of a recirculating liquid substrate; by modulating the microbiota interactions; and by following strict phytosanitary measures and workers’ hygienic practices. There is a timely need to adopt measures, such as the Good Agricultural Practice (GAP) guidelines, to mitigate the risks and ensure safe hydroponically grown vegetables for consumers

    Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease

    No full text
    Downy mildew caused by the oomycete pathogen Pseudoperonospora cubensis is a devastating foliar disease of cucurbits worldwide. We previously demonstrated that the wild melon line PI 124111F (PI) is highly resistant to all pathotypes of P. cubensis. That resistance was controlled genetically by two partially dominant, complementary loci. Here, we show that unlike other plant disease resistance genes, which confer an ability to resist infection by pathogens expressing corresponding avirulence genes, the resistance of PI to P. cubensis is controlled by enhanced expression of the enzymatic resistance (eR) genes At1 and At2. These constitutively expressed genes encode the photorespiratory peroxisomal enzyme proteins glyoxylate aminotransferases. The low expression of At1 and At2 in susceptible melon lines is regulated mainly at the transcriptional level. This regulation is independent of infection with the pathogen. Transgenic melon plants overexpressing either of these eR genes displayed enhanced activity of glyoxylate aminotransferases and remarkable resistance against P. cubensis. The cloned eR genes provide a new resource for developing downy mildew–resistant melon varieties
    corecore