79 research outputs found

    Solid-liquid critical behavior of water in nanopores

    Get PDF
    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid−liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature−pressure−diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid−liquid critical phenomena of nanoconfined water. Solid−liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid−liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line

    Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential

    Get PDF
    We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII–plastic ice transitions are observed

    Close-packed structures and phase diagram of soft spheres in cylindrical pores

    Get PDF
    It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems

    Hydrophobic effect in the pressure-temperature plane

    Get PDF
    The free energy of the hydrophobic hydration and the strength of the solvent-mediated attraction between hydrophobic solute molecules are calculated in the pressure-temperature plane. This is done in the framework of an exactly soluble model that is an extension of the lattice model proposed by Kolomeisky and Widom [A. B. Kolomeisky and B. Widom, Faraday Discuss. 112, 81 (1999)]. The model takes into account both the mechanism of the hydrophobic effect dominant at low temperatures and the opposite mechanism of solvation appearing at high temperatures and has the pressure as a second thermodynamic variable. With this model, two boundaries are identified in the pressure-temperature plane: the first one within which the solubility, or the Ostwald absorption coefficient, decreases with increasing temperature at fixed pressure and the second one within which the strength of solvent-mediated attraction increases with increasing temperature. The two are nearly linear and parallel to each other, and the second boundary lies in the low-temperature and low-pressure side of the first boundary. It is found that a single, near-linear relation between the hydration free energy and the strength of the hydrophobic attraction holds over the entire area within the second boundary in the pressure-temperature plane. (C) 2004 American Institute of Physics

    Close-Packed Ices in Nanopores

    Get PDF
    Water molecules in any of the ice polymorphs organize themselves into a perfect four-coordinated hydrogen-bond network at the expense of dense packing. Even at high pressures, there seems to be no way to reconcile the ice rules with the close packing. Here, we report several close-packed ice phases in carbon nanotubes obtained from molecular dynamics simulations of two different water models. Typically they are in plastic states at high temperatures and are transformed into the hydrogen-ordered ice, keeping their close-packed structures at lower temperatures. The close-packed structures of water molecules in carbon nanotubes are identified with those of spheres in a cylinder. We present design principles of hydrogen-ordered, close-packed structures of ice in nanotubes, which suggest many possible dense ice forms with or without nonzero polarization. In fact, some of the simulated ices are found to exhibit ferroelectric ordering upon cooling

    Hydrophobic effect in the pressure-temperature plane

    Full text link

    Solvation free energies of alcohols in water: temperature and pressure dependences

    Get PDF
    Solvation free energies μ* of amphiphilic species, methanol and 1,2-hexanediol, are obtained as a function of temperature or pressure based on molecular dynamics simulations combined with efficient free-energy calculation methods. In general, μ* of an amphiphile can be divided into Image ID:d3cp03799a-t1.gif and Image ID:d3cp03799a-t2.gif, the nonpolar and electrostatic contributions, and the former is further divided into Image ID:d3cp03799a-t3.gif and Image ID:d3cp03799a-t4.gif which are the work of cavity formation process and the free energy change due to weak, attractive interactions between the solute molecule and surrounding solvent molecules. We demonstrate that μ* of the two amphiphilic solutes can be obtained accurately using a perturbation combining method, which relies on the exact expressions for Image ID:d3cp03799a-t5.gif and Image ID:d3cp03799a-t6.gif and requires no simulations of intermediate systems between the solute with strong, repulsive interactions and the solute with the van der Waals and electrostatic interactions. The decomposition of μ* gives us several physical insights including that μ* is an increasing function of T due to Image ID:d3cp03799a-t7.gif, that the contributions of hydrophilic groups to the temperature dependence of μ* are additive, and that the contribution of the van der Waals attraction to the solvation volume is greater than that of the electrostatic interactions

    Theoretical analysis on thermodynamic stability of chignolin

    Get PDF
    Understanding the dominant factor in thermodynamic stability of proteins remains an open challenge. Kauzmann's hydrophobic interaction hypothesis, which considers hydrophobic interactions between nonpolar groups as the dominant factor, has been widely accepted for about sixty years and attracted many scientists. The hypothesis, however, has not been verified or disproved because it is difficult, both theoretically and experimentally, to quantify the solvent effects on the free energy change in protein folding. Here, we developed a computational method for extracting the dominant factor behind thermodynamic stability of proteins and applied it to a small, designed protein, chignolin. The resulting free energy profile quantitatively agreed with the molecular dynamics simulations. Decomposition of the free energy profile indicated that intramolecular interactions predominantly stabilized collapsed conformations, whereas solvent-induced interactions, including hydrophobic ones, destabilized them. These results obtained for chignolin were consistent with the site-directed mutagenesis and calorimetry experiments for globular proteins with hydrophobic interior cores

    Phase diagram of water between hydrophobic surfaces

    Get PDF
    Molecular dynamics simulations demonstrate that there are at least two classes of quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer amorphous (or crystalline) ice, and monolayer ice phases at various thermodynamic conditions, then determine curves of melting, freezing, and solid-solid structural change on the isostress planes where temperature and intersurface distance are variable, and finally we propose a phase diagram of the confined water in the temperature-pressure-distance space
    • …
    corecore