45 research outputs found

    Plasticity of Cells and Ex Vivo Production of Red Blood Cells

    Get PDF
    The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If transfusable RBCs could be produced abundantly from certain resources, it would be very useful. Our group has developed a method to produce enucleated RBCs efficiently from hematopoietic stem/progenitor cells present in umbilical cord blood. More recently, it was reported that enucleated RBCs could be abundantly produced from human embryonic stem (ES) cells. The common obstacle for application of these methods is that they require very high cost to produce sufficient number of RBCs that are applicable in the clinic. If erythroid cell lines (immortalized cell lines) able to produce transfusable RBCs ex vivo were established, they would be valuable resources. Our group developed a robust method to obtain immortalized erythroid cell lines able to produce mature RBCs. To the best of our knowledge, this was the first paper to show the feasibility of establishing immortalized erythroid progenitor cell lines able to produce enucleated RBCs ex vivo. This result strongly suggests that immortalized human erythroid progenitor cell lines able to produce mature RBCs ex vivo can also be established

    Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Get PDF
    We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES) cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months

    Establishment of Mouse Embryonic Stem Cell-Derived Erythroid Progenitor Cell Lines Able to Produce Functional Red Blood Cells

    Get PDF
    BACKGROUND: The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If erythroid cell lines able to produce transfusable RBCs in vitro were established, they would be valuable resources. However, such cell lines have not been established. To evaluate the feasibility of establishing useful erythroid cell lines, we attempted to establish such cell lines from mouse embryonic stem (ES) cells. METHODOLOGY/PRINCIPAL FINDINGS: We developed a robust method to obtain differentiated cell lines following the induction of hematopoietic differentiation of mouse ES cells and established five independent hematopoietic cell lines using the method. Three of these lines exhibited characteristics of erythroid cells. Although their precise characteristics varied, each of these lines could differentiate in vitro into more mature erythroid cells, including enucleated RBCs. Following transplantation of these erythroid cells into mice suffering from acute anemia, the cells proliferated transiently, subsequently differentiated into functional RBCs, and significantly ameliorated the acute anemia. In addition, we did not observe formation of any tumors following transplantation of these cells. CONCLUSION/SIGNIFICANCE: To the best of our knowledge, this is the first report to show the feasibility of establishing erythroid cell lines able to produce mature RBCs. Considering the number of human ES cell lines that have been established so far, the intensive testing of a number of these lines for erythroid potential may allow the establishment of human erythroid cell lines similar to the mouse erythroid cell lines described here. In addition, our results strongly suggest the possibility of establishing useful cell lines committed to specific lineages other than hematopoietic progenitors from human ES cells

    The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma-Association with Clinical Outcome and Tumor Phenotypes

    Get PDF
    In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter-and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma

    Endoplasmic reticulum stress regulation in hematopoietic stem cells

    No full text
    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis

    Regulation of unfolded protein response in hematopoietic stem cells

    No full text
    Hematopoietic stem cells (HSCs) play a central role in hematopoietic regeneration, which has been demonstrated by thorough studies. In contrast, the cell cycle status and metabolic condition of HSCs define these cells as dormant. Recent studies have also revealed that protein metabolism is quite unique, as dormant HSCs have a lower protein synthesis rate and folding capacity. Under proliferative conditions, upon hematopoietic stress, HSCs need to deal with higher requirements of protein production to achieve fast and effective blood replenishment. In such cases, increased protein synthesis could exceed the capacity of precise protein quality control, leading to the accumulation of unfolded and misfolded proteins. In turn, this triggers endoplasmic reticulum (ER) stress as a part of the unfolded protein response (UPR). Since ER stress is a multi-layered, bidirectional cellular response that contains both positive (survival) and negative (death) reactions, proper management of UPR and ER stress signals is crucial for HSCs and also for maintaining the healthy hematopoietic system. In this review, we introduce the latest findings in this emerging field within hematopoiesis and HSC regulation

    Common signaling networks characterize leukemia-initiating cells in acute myeloid leukemia.

    Get PDF
    Identification and characterization of leukemia-initiating cells (LICs) is important to understand leukemogenesis and develop novel therapies for leukemia. In this issue of Cell Stem Cell, Gibbs et al. (2012) demonstrate that common active signaling pathways in LICs may be targeted to treat acute myeloid leukemia

    Induction of enucleation in primary and immortalized erythroid cells

    No full text
    Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources

    Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress.

    Get PDF
    Developmental pluripotency-associated 5 (Dppa5) is an RNA binding protein highly expressed in undifferentiated pluripotent stem cells. Here, we demonstrate that Dppa5 is a regulator of hematopoietic stem cells (HSCs) that critically governs reconstitution capacity after bone marrow transplantation. Ectopic expression of Dppa5 followed by in vitro culture robustly increased HSC reconstitution levels through suppression of endoplasmic reticulum (ER) stress and apoptosis. Remarkably, a chemical chaperone that decreases ER stress in HSCs also increases HSC engraftment. Conversely, knockdown of Dppa5 impaired the long-term reconstitution ability of HSCs due to elevated ER stress levels, suggesting that ER stress regulation is physiologically important for proper HSC function in vivo. Thus, Dppa5 represents a pivotal connection between ER stress regulation and stem cell properties in HSCs. The findings also demonstrate that protein quality control is critical for the maintenance, survival, and function of HSCs in vivo and ex vivo
    corecore