53 research outputs found

    Method of Quantifying Size of Retinal Hemorrhages in Eyes with Branch Retinal Vein Occlusion Using 14-Square Grid: Interrater and Intrarater Reliability

    Get PDF
    Purpose. To describe a method of quantifying the size of the retinal hemorrhages in branch retinal vein occlusion (BRVO) and to determine the interrater and intrarater reliabilities of these measurements. Methods. Thirty-five fundus photographs from 35 consecutive eyes with BRVO were studied. The fundus images were analyzed with Power-Point® software, and a grid of 14 squares was laid over the fundus image. Raters were asked to judge the percentage of each of the 14 squares that was covered by the hemorrhages, and the average of the 14 squares was taken to be the relative size of the retinal hemorrhage. Results. Interrater reliability between three raters was higher when a grid with 14 squares was used (intraclass correlation coefficient (ICC), 0.96) than that when a box with no grid was used (ICC, 0.78). Intrarater reliability, which was calculated by the retinal hemorrhage area measured on two different days, was also higher (ICC, 0.97) than that with no grid (ICC, 0.86). Interrater reliability for five fundus pictures with poor image quality was also good when a grid with 14 squares was used (ICC, 0.88). Conclusions. Although our method is subjective, excellent interrater and intrarater reliabilities indicate that this method can be adapted for clinical use

    Body mass index and colorectal cancer risk : A Mendelian randomization study

    Get PDF
    Traditional observational studies have reported a positive association between higher body mass index (BMI) and the risk of colorectal cancer (CRC). However, evidence from other approaches to pursue the causal relationship between BMI and CRC is sparse. A two-sample Mendelian randomization (MR) study was undertaken using 68 single nucleotide polymorphisms (SNPs) from the Japanese genome-wide association study (GWAS) and 654 SNPs from the GWAS catalogue for BMI as sets of instrumental variables. For the analysis of SNP-BMI associations, we undertook a meta-analysis with 36 303 participants in the Japanese Consortium of Genetic Epidemiology studies (J-CGE), comprising normal populations. For the analysis of SNP-CRC associations, we utilized 7636 CRC cases and 37 141 controls from five studies in Japan, and undertook a meta-analysis. Mendelian randomization analysis of inverse-variance weighted method indicated that a one-unit (kg/m2) increase in genetically predicted BMI was associated with an odds ratio of 1.13 (95% confidence interval, 1.06-1.20; P value <.001) for CRC using the set of 68 SNPs, and an odds ratio of 1.07 (1.03-1.11, 0.001) for CRC using the set of 654 SNPs. Sensitivity analyses robustly showed increased odds ratios for CRC for every one-unit increase in genetically predicted BMI. Our MR analyses strongly support the evidence that higher BMI influences the risk of CRC. Although Asians are generally leaner than Europeans and North Americans, avoiding higher BMI seems to be important for the prevention of CRC in Asian populations
    corecore