295 research outputs found
Cerebral Venous Thrombosis in the Mediterranean Area in Children
Cerebral Venous Sinus (sinovenous) Thrombosis (CSVT) is a serious and rare disorder, increasingly recognized and diagnosed in pediatric patients. The etiology and pathophisiology has not yet been completely clarified, and unlike adults with CSVT, management in children and neonates remains controversial. However, morbidity and mortality are significant, highlighting the continued need for high-quality studies within this field. The following review will highlight aspects of CSVT in the mediteranian area in children
Maturation trajectories of cortical resting-state networks depend on the mediating frequency band
The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13–30 Hz) and gamma (31–80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development.This work was supported by grants from the Nancy Lurie Marks Family Foundation (TK, SK, MGK), Autism Speaks (TK), The Simons Foundation (SFARI 239395, TK), The National Institute of Child Health and Development (R01HD073254, TK), National Institute for Biomedical Imaging and Bioengineering (P41EB015896, 5R01EB009048, MSH), and the Cognitive Rhythms Collaborative: A Discovery Network (NFS 1042134, MSH). (Nancy Lurie Marks Family Foundation; Autism Speaks; SFARI 239395 - Simons Foundation; R01HD073254 - National Institute of Child Health and Development; P41EB015896 - National Institute for Biomedical Imaging and Bioengineering; 5R01EB009048 - National Institute for Biomedical Imaging and Bioengineering; NFS 1042134 - Cognitive Rhythms Collaborative: A Discovery Network
Semantic learning in autonomously active recurrent neural networks
The human brain is autonomously active, being characterized by a
self-sustained neural activity which would be present even in the absence of
external sensory stimuli. Here we study the interrelation between the
self-sustained activity in autonomously active recurrent neural nets and
external sensory stimuli.
There is no a priori semantical relation between the influx of external
stimuli and the patterns generated internally by the autonomous and ongoing
brain dynamics. The question then arises when and how are semantic correlations
between internal and external dynamical processes learned and built up?
We study this problem within the paradigm of transient state dynamics for the
neural activity in recurrent neural nets, i.e. for an autonomous neural
activity characterized by an infinite time-series of transiently stable
attractor states. We propose that external stimuli will be relevant during the
sensitive periods, {\it viz} the transition period between one transient state
and the subsequent semi-stable attractor. A diffusive learning signal is
generated unsupervised whenever the stimulus influences the internal dynamics
qualitatively.
For testing we have presented to the model system stimuli corresponding to
the bars and stripes problem. We found that the system performs a non-linear
independent component analysis on its own, being continuously and autonomously
active. This emergent cognitive capability results here from a general
principle for the neural dynamics, the competition between neural ensembles.Comment: Journal of Algorithms in Cognition, Informatics and Logic, special
issue on `Perspectives and Challenges for Recurrent Neural Networks', in
pres
Encoding cortical dynamics in sparse features.
Distributed cortical solutions of magnetoencephalography (MEG) and electroencephalography (EEG) exhibit complex spatial and temporal dynamics. The extraction of patterns of interest and dynamic features from these cortical signals has so far relied on the expertise of investigators. There is a definite need in both clinical and neuroscience research for a method that will extract critical features from high-dimensional neuroimaging data in an automatic fashion. We have previously demonstrated the use of optical flow techniques for evaluating the kinematic properties of motion field projected on non-flat manifolds like in a cortical surface. We have further extended this framework to automatically detect features in the optical flow vector field by using the modified and extended 2-Riemannian Helmholtz-Hodge decomposition (HHD). Here, we applied these mathematical models on simulation and MEG data recorded from a healthy individual during a somatosensory experiment and an epilepsy pediatric patient during sleep. We tested whether our technique can automatically extract salient dynamical features of cortical activity. Simulation results indicated that we can precisely reproduce the simulated cortical dynamics with HHD; encode them in sparse features and represent the propagation of brain activity between distinct cortical areas. Using HHD, we decoded the somatosensory N20 component into two HHD features and represented the dynamics of brain activity as a traveling source between two primary somatosensory regions. In the epilepsy patient, we displayed the propagation of the epileptic activity around the margins of a brain lesion. Our findings indicate that HHD measures computed from cortical dynamics can: (i) quantitatively access the cortical dynamics in both healthy and disease brain in terms of sparse features and dynamic brain activity propagation between distinct cortical areas, and (ii) facilitate a reproducible, automated analysis of experimental and clinical MEG/EEG source imaging data
Cerebral Venous Sinus Thrombosis in Children: A Multicenter Cohort From the United States
This study presents a large multicenter cohort of children with cerebral venous thrombosis from 5 centers in the United States and analyzes their clinical findings and risk factors. Seventy Patients were included in the study (25 neonates, 35%). The age ranged from 6 days to 12 years. Thirty-eight (55%) were younger than 6 months of age, and 28 (40%) were male. Presenting features included seizures (59%), coma (30%), headache (18%), and motor weakness (21%). Common neurological findings included decreased level of consciousness (50%), papilledema (18%), cranial nerve palsy (33%), hemiparesis (29%), and hypotonia (22%). Predisposing factors were identified in 63 (90%) Patients. These included infection (40%), perinatal complications (25%), hypercoagulable/hematological diseases (13%), and various other conditions (10%). Hemorrhagic infarcts occurred in 40% of the Patients and hydrocephalus in 10%. Transverse sinus thrombosis was more common (73%) than sagittal sinus thrombosis (35%). Three children underwent thrombolysis, 15 Patients received anticoagulation, and 49 (70%) were treated with antibiotics and hydration. Nine (13%) Patients (6 of them neonates) died. Twenty-nine Patients (41%) were normal, whereas 32 Patients (46%) had a neurological deficit at discharge. Seizures and coma at presentation were poor prognostic indicators. In conclusion, cerebral venous thrombosis predominantly affects children younger than age 6 months. Mortality is high (25%) in neonatal cerebral venous thrombosis. Only 18 (25%) Patients were treated with anticoagulation or thrombolysis
Mode of delivery in hemophilia : vaginal delivery and Cesarean section carry similar risks for intracranial hemorrhages and other major bleeds
The optimal mode of delivery for a pregnant hemophilia carrier is still a matter of debate. The aim of the study was to determine the incidence of intracranial hemorrhage and other major bleeds in neonates with moderate and severe hemophilia in relationship to mode of delivery and known family history. A total of 926 neonates, 786 with severe and 140 with moderate hemophilia were included in this PedNet multicenter study. Vaginal delivery was performed in 68.3% (n=633) and Cesarean section in 31.6% (n=293). Twenty intracranial hemorrhages (2.2%) and 44 other major bleeds (4.8%) occurred. Intracranial hemorrhages occurred in 2.4% of neonates following vaginal delivery compared to 1.7% after Cesarean section (P=not significant); other major bleeds occurred in 4.2% born by vaginal delivery and in 5.8% after Cesarean section (P=not significant). Further analysis of subgroups (n=813) identified vaginal delivery with instruments being a significant risk factor for both intracranial hemorrhages and major bleeds (Relative Risk: 4.78-7.39; PPeer reviewe
Dilemmas on emicizumab in children with haemophilia A: A survey of strategies from PedNet centres.
INTRODUCTION
Haemophilia A care has changed with the introduction of emicizumab. Experience on the youngest children is still scarce and clinical practice varies between haemophilia treatment centres.
AIM
We aimed to assess the current clinical practice on emicizumab prophylaxis within PedNet, a collaborative research platform for paediatricians treating children with haemophilia.
METHODS
An electronic survey was sent to all PedNet members (n = 32) between October 2022 and February 2023. The survey included questions on the availability of emicizumab, on the practice of initiating prophylaxis in previously untreated or minimally treated patients (PUPs or MTPs) and emicizumab use in patients with or without inhibitors.
RESULTS
All but four centres (28/32; 88%) responded. Emicizumab was available in clinical practice in 25/28 centres (89%), and in 3/28 for selected patients only (e.g. with inhibitors). Emicizumab was the preferred choice for prophylaxis in PUPs or MTPs in 20/25 centres; most (85%) started emicizumab prophylaxis before 1 year of age (30% before 6 months of age) and without concomitant FVIII (16/20; 80%). After the loading dose, 13/28 centres administered the recommended dosing, while the others adjusted the interval of injections to give whole vials. In inhibitor patients, the use of emicizumab during ITI was common, with low-dose ITI being the preferred protocol.
CONCLUSION
Most centres choose to initiate prophylaxis with emicizumab before 12 months of age and without concomitant FVIII. In inhibitor patients, ITI is mostly given in addition to emicizumab, but there was no common practice on how to proceed after successful ITI
Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.
The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development
Neural Network Mechanisms Underlying Stimulus Driven Variability Reduction
It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits
- …