8 research outputs found

    SNPs in Multi-Species Conserved Sequences (MCS) as useful markers in association studies: a practical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although genes play a key role in many complex diseases, the specific genes involved in most complex diseases remain largely unidentified. Their discovery will hinge on the identification of key sequence variants that are conclusively associated with disease. While much attention has been focused on variants in protein-coding DNA, variants in noncoding regions may also play many important roles in complex disease by altering gene regulation. Since the vast majority of noncoding genomic sequence is of unknown function, this increases the challenge of identifying "functional" variants that cause disease. However, evolutionary conservation can be used as a guide to indicate regions of noncoding or coding DNA that are likely to have biological function, and thus may be more likely to harbor SNP variants with functional consequences. To help bias marker selection in favor of such variants, we devised a process that prioritizes annotated SNPs for genotyping studies based on their location within Multi-species Conserved Sequences (MCSs) and used this process to select SNPs in a region of linkage to a complex disease. This allowed us to evaluate the utility of the chosen SNPs for further association studies. Previously, a region of chromosome 1q43 was linked to Multiple Sclerosis (MS) in a genome-wide screen. We chose annotated SNPs in the region based on location within MCSs (termed MCS-SNPs). We then obtained genotypes for 478 MCS-SNPs in 989 individuals from MS families.</p> <p>Results</p> <p>Analysis of our MCS-SNP genotypes from the 1q43 region and comparison to HapMap data confirmed that annotated SNPs in MCS regions are frequently polymorphic and show subtle signatures of selective pressure, consistent with previous reports of genome-wide variation in conserved regions. We also present an online tool that allows MCS data to be directly exported to the UCSC genome browser so that MCS-SNPs can be easily identified within genomic regions of interest.</p> <p>Conclusion</p> <p>Our results showed that MCS can easily be used to prioritize markers for follow-up and candidate gene association studies. We believe that this novel approach demonstrates a paradigm for expediting the search for genes contributing to complex diseases.</p

    Follow-up examination of linkage and association to chromosome 1q43 in multiple sclerosis

    No full text
    Multiple sclerosis is a debilitating neuroimmunological and neurodegenerative disease affecting more than 400,000 individuals in the United States. Population and family-based studies have suggested that there is a strong genetic component. Numerous genomic linkage screens have identified regions of interest for MS loci. Our own second-generation genome-wide linkage study identified a handful of non-MHC regions with suggestive linkage. Several of these regions were further examined using single-nucleotide polymorphisms (SNPs) with average spacing between SNPs of approximately 1.0 Mb in a dataset of 173 multiplex families. The results of that study provided further evidence for the involvement of the chromosome 1q43 region. This region is of particular interest given linkage evidence in studies of other autoimmune and inflammatory diseases including rheumatoid arthritis and systemic lupus erythematosus. In this follow-up study, we saturated the region with ~700 SNPs (average spacing of 10kb per SNP) in search of disease associated variation within this region. We found preliminary evidence to suggest that common variation within the RGS7 locus may be involved in disease susceptibility

    Functional candidate genes in age-related macular degeneration: significant association with VEGF

    No full text
    PURPOSE. Age-related macular degeneration (AMD) is a retinal degenerative disease that is the leading cause of blindness worldwide for individuals over the age of 60. Although the etiology of AMD remains largely unknown, numerous studies have suggested that both genes and environmental risk factors significantly influence the risk of developing AMD. Identification of the underlying genes has been difficult, with both genomic screen (locational) and candidate gene (functional) approaches being used. The present study tested candidate genes for association with AMD. [VLDLR]) were tested for genetic linkage and allelic association, using two independent datasets: a family-based association dataset including 162 families and an independent case-control dataset with 399 cases and 159 fully evaluated controls. RESULTS. Test results suggested that genetic variation in five of these genes (IL1A, CKB, A2M, MGST1, and DCP1) is unlikely to explain a significant fraction of the risk of developing AMD in this population. LRP6 showed evidence both for linkage (heterogeneity lod [HLOD] ϭ 1.14) in the family-based dataset and for association (P ϭ 0.004) in the case-control dataset. VEGF showed evidence of linkage (HLOD ϭ 1.32) and demonstrated significant independent allelic association in both the family-based (P ϭ 0.001) and case-control (P ϭ 0.02) datasets. METHODS. Eight genes (␣- VLDLR showed evidence of association in both the family based (P ϭ 0.03) and case-control (P ϭ 0 Complementing a genomic screening (e.g., locational) approach is the direct testing of candidate genes proposed because their putative functions are related to the known AMD pathology. One such set of genes consists of those already known to be responsible for Mendelian macular and retinal dystrophies that share common features with AMD. However, genes ELOVL4 (Stargardt disease), 20 bestrophin (Best disease), In contrast, the apolipoprotein E (APOE) gene, which is involved in lipid transport and distribution, has consistently demonstrated a protective effect for the APOE-⑀4 allele on disease risk in white AMD populations (Klaver CCW, et al. IOVS 1996;37:ARVO Abstract 1920). From th
    corecore