27 research outputs found
Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase
In response to limited nutrients, fungal cells exit the primary growth phase, enter the stationary phase, and cease proliferation. Although fundamental to microbial physiology in many environments, the regulation of this transition is poorly understood but likely involves many transcriptional regulators. These may include the sirtuins, which deacetylate acetyllysine residues of histones and epigenetically regulate global transcription. Therefore, we investigated the role of a nuclear sirtuin, sirtuin E (SirE), from the ascomycete fungus Aspergillus nidulans. An A. nidulans strain with a disrupted sirE gene (SirEΔ) accumulated more acetylated histone H3 during the stationary growth phase when sirE was expressed at increased levels in the wild type. SirEΔ exhibited decreased mycelial autolysis, conidiophore development, sterigmatocystin biosynthesis, and production of extracellular hydrolases. Moreover, the transcription of the genes involved in these processes was also decreased, indicating that SirE is a histone deacetylase that up-regulates these activities in the stationary growth phase. Transcriptome analyses indicated that SirE repressed primary carbon and nitrogen metabolism and cell-wall synthesis. Chromatin immunoprecipitation demonstrated that SirE deacetylates acetylated Lys-9 residues in histone H3 at the gene promoters of α-1,3-glucan synthase (agsB), glycolytic phosphofructokinase (pfkA), and glyceraldehyde 3-phosphate (gpdA), indicating that SirE represses the expression of these primary metabolic genes. In summary, these results indicate that SirE facilitates the metabolic transition from the primary growth phase to the stationary phase. Because the observed gene expression profiles in stationary phase matched those resulting from carbon starvation, SirE appears to control this metabolic transition via a mechanism associated with the starvation response
Sirtuin A regulates secondary metabolite production by Aspergillus nidulans
Late-stage cultures of filamentous fungi under nutrient starvation produce valuable secondary metabolites such as pharmaceuticals and pigments, as well as deleterious mycotoxins, all of which have remarkable structural diversity and wide-spectrum bioactivity. The fungal mechanisms regulating the synthesis of many of these compounds are not fully understood, but sirtuin A (SirA) is a key factor that initiates production of the secondary metabolites, sterigmatocystin and penicillin G, by Aspergillus nidulans. Sirtuin is a ubiquitous NAD+-dependent histone deacetylase that converts euchromatin to heterochromatin and silences gene expression. In this study, we have investigated the transcriptome of a sirA gene disruptant (SirAΔ), and found that SirA concomitantly repressed the expression of gene clusters for synthesizing secondary metabolites and activated that of others. Extracts of SirAΔ cultures grown on solid agar and analyzed by HPLC indicated that SirA represses the production of austinol, dehydroaustinol and sterigmatocystin. These results indicated that SirA is a transcriptional regulator of fungal secondary metabolism
AmfS, an Extracellular Peptidic Morphogen in Streptomyces griseus
The amf gene cluster was previously identified as a regulator for the onset of aerial-mycelium formation in Streptomyces griseus. The nucleotide sequences of amf and its counterparts in other species revealed a conserved gene organization consisting of five open reading frames. A nonsense mutation in amfS, encoding a 43-amino-acid peptide, caused significant blocking of aerial-mycelium formation and streptomycin production, suggesting its role as a regulatory molecule. Extracellular-complementation tests for the aerial-mycelium-deficient phenotype of the amfS mutant demonstrated that AmfS was secreted by the wild-type strain. A null mutation in amfBA, encoding HlyB-like membrane translocators, abolished the extracellular AmfS activity without affecting the wild-type morphology, which suggests that AmfBA is involved not in production but in export of AmfS. A synthetic C-terminal octapeptide partially induced aerial-mycelium formation in the amfS mutant, which suggests that an AmfS derivative, but not AmfS itself, serves as an extracellular morphogen
Transcriptional Regulation of the Nitrile Hydratase Gene Cluster in Pseudomonas chlororaphis B23▿
An enormous amount of nitrile hydratase (NHase) is inducibly produced by Pseudomonas chlororaphis B23 after addition of methacrylamide as the sole nitrogen source to a medium. The expression pattern of the P. chlororaphis B23 NHase gene cluster in response to addition of methacrylamide to the medium was investigated. Recently, we reported that the NHase gene cluster comprises seven genes (oxdA, amiA, nhpA, nhpB, nhpC, nhpS, and acsA). Sequence analysis of the 1.5-kb region upstream of the oxdA gene revealed the presence of a 936-bp open reading frame (designated nhpR), which should encode a protein with a molecular mass of 35,098. The deduced amino acid sequence of the nhpR product showed similarity to the sequences of transcriptional regulators belonging to the XylS/AraC family. Although the transcription of the eight genes (nhpR, oxdA, amiA, nhpABC, nhpS, and acsA) in the NHase gene cluster was induced significantly in the P. chlororaphis B23 wild-type strain after addition of methacrylamide to the medium, transcription of these genes in the nhpR disruptant was not induced, demonstrating that nhpR codes for a positive transcriptional regulator in the NHase gene cluster. A reverse transcription-PCR experiment revealed that five genes (oxdA, amiA, nhpA, nhpB, and nhpC) are cotranscribed, as are two other genes (nhpS and acsA). The transcription start sites for nhpR, oxdA, nhpA, and nhpS were mapped by primer extension analysis, and putative −12 and −24 σ54-type promoter binding sites were identified. NhpR was found to be the first transcriptional regulator of NHase belonging to the XylS/AraC family
The Pseudomonas aeruginosa Orphan Quorum Sensing Signal Receptor QscR Regulates Global Quorum Sensing Gene Expression by Activating a Single Linked Operon
Pseudomonas aeruginosa uses two acyl-homoserine lactone signals and two quorum sensing (QS) transcription factors, LasR and RhlR, to activate dozens of genes. LasR responds to N-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and RhlR to N-butanoyl-homoserine lactone (C4-HSL). There is a third P. aeruginosa acyl-homoserine-lactone-responsive transcription factor, QscR, which acts to dampen or delay activation of genes by LasR and RhlR by an unknown mechanism. To better understand the role of QscR in P. aeruginosa QS, we performed a chromatin immunoprecipitation analysis, which showed this transcription factor bound the promoter of only a single operon of three genes linked to qscR, PA1895 to PA1897. Other genes that appear to be regulated by QscR in transcriptome studies were not direct targets of QscR. Deletion of PA1897 recapitulates the early QS activation phenotype of a QscR-null mutant, and the phenotype of a QscR-null mutant was complemented by PA1895-1897 but not by PA1897 alone. We conclude that QscR acts to modulate quorum sensing through regulation of a single operon, apparently raising the QS threshold of the population and providing a “brake” on QS autoinduction.Quorum sensing, a cell-cell communication system, is broadly distributed among bacteria and is commonly used to regulate the production of shared products. An important consequence of quorum sensing is a delay in production of certain products until the population density is high. The bacterium Pseudomonas aeruginosa has a particularly complicated quorum sensing system involving multiple signals and receptors. One of these receptors, QscR, downregulates gene expression, unlike the other receptors in P. aeruginosa. QscR does so by inducing the expression of a single operon whose function provides an element of resistance to a population reaching a quorum. This finding has importance for design of quorum sensing inhibitory strategies and can also inform design of synthetic biological circuits that use quorum sensing receptors to regulate gene expression