8 research outputs found
Neuronal XRN1 is required for maintenance of whole-body metabolic homeostasis
Control of mRNA stability and degradation is essential for appropriate gene expression, and its dysregulation causes various disorders, including cancer, neurodegenerative diseases, diabetes, and obesity. The 5′–3′ exoribonuclease XRN1 executes the last step of RNA decay, but its physiological impact is not well understood. To address this, forebrain-specific Xrn1 conditional knockout mice (Xrn1-cKO) were generated, as Xrn1 null mice were embryonic lethal. Xrn1-cKO mice exhibited obesity with leptin resistance, hyperglycemia, hyperphagia, and decreased energy expenditure. Obesity resulted from dysregulated communication between the central nervous system and peripheral tissues. Moreover, expression of mRNAs encoding proteins that regulate appetite and energy expenditure was dysregulated in the hypothalamus of Xrn1-cKO mice. Therefore, we propose that XRN1 function in the hypothalamus is critical for maintenance of metabolic homeostasis
Effects of Myostatin on Nuclear Morphology at the Myotendinous Junction
Myostatin (Myo) is known to suppress skeletal muscle growth, and was recently reported to control tendon homeostasis. The purpose of the present study was to investigate the regulatory involvement of Myo in the myotendinous junction (MTJ) in vivo and in vitro. After Achilles tendon injury in mice, we identified unexpected cell accumulation on the tendon side of the MTJ. At postoperative day 7 (POD7), the nuclei had an egg-like profile, whereas at POD28 they were spindle-shaped. The aspect ratio of nuclei on the tendon side of the MTJ differed significantly between POD7 and POD28 (p = 4.67 × 10−34). We then investigated Myo expression in the injured Achilles tendon. At the MTJ, Myo expression was significantly increased at POD28 relative to POD7 (p = 0.0309). To investigate the action of Myo in vitro, we then prepared laminated sheets of myoblasts (C2C12) and fibroblasts (NIH3T3) (a pseudo MTJ model). Myo did not affect the expression of Pax7 and desmin (markers of muscle development), scleraxis and temonodulin (markers of tendon development), or Sox9 (a common marker of muscle and tendon development) in the cell sheets. However, Myo changed the nuclear morphology of scleraxis-positive cells arrayed at the boundary between the myoblast sheet and the fibroblast sheet (aspect ratio of the cell nuclei, myostatin(+) vs. myostatin(-): p = 0.000134). Myo may strengthen the connection at the MTJ in the initial stages of growth and wound healing
Inflammatory Cytokine-Induced Muscle Atrophy and Weakness Can Be Ameliorated by an Inhibition of TGF-β-Activated Kinase-1
Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-β-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1β. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines
Mechanisms of myeloma cell resistance to proteasome inhibitors
Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 hour at concentrations up to 400 and 1,000nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 hours in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of β5 subunit activity decreased at 24 hours in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of β5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs