1,811 research outputs found

    Quantum wells with atomically smooth interfaces

    Full text link
    By a cleaved-edge overgrowth method with molecular beam epitaxy and a (110) growth-interrupt-anneal, we have fabricated a GaAs quantum well exactly 30 monolayers thick bounded by atomically smooth AlGaAs hetero-interfaces without atomic roughness. Micro-photoluminescence imaging of this quantum well indeed shows spatially uniform and spectrally sharp emission over areas of several tens of μ\mum in extent. By adding a fractional GaAs monolayer to our quantum well we are able to study the details of the atomic step-edge kinetics responsible for flat interface formation.Comment: 4 pages, 3 figures, revTex

    One-dimensional continuum and exciton states in quantum wires

    Full text link
    High-quality T-shaped quantum wires are fabricated by cleaved-edge overgrowth with the molecular beam epitaxy on the interface improved by a growth-interrupt high-temperature anneal. Characterization by micro-photoluminescence (PL) and PL excitation (PLE) spectroscopy at 5 K reveals high uniformity, a sharp spectral width, and a small Stokes shift of one-dimensional (1-D) excitons. The PLE spectrum for 1-D states shows a large peak of ground-state excitons and a small absorption band ascribed to 1-D continuum states with an onset at 11 meV above the exciton peak.Comment: 4 pages, 4 figures, RevTe

    Lasing from a single quantum wire

    Full text link
    A laser with an active volume consisting of only a single quantum wire in the 1-dimensional (1-D) ground state is demonstrated. The single wire is formed quantum-mechanically at the T-intersection of a 14 nm Al_{0.07}Ga_{0.93}As quantum well and a 6 nm GaAs quantum well, and is embedded in a 1-D single-mode optical waveguide. We observe single-mode lasing from the quantum wire ground state by optical pumping. The laser operates from 5 to 60 K, and has a low threshold pumping power of 5 mW at 5 K.Comment: 4 pages including 4 figure
    • …
    corecore