1,812 research outputs found

    Asymptotic Distribution of Multilevel Channel Polarization for a Certain Class of Erasure Channels

    Full text link
    This study examines multilevel channel polarization for a certain class of erasure channels that the input alphabet size is an arbitrary composite number. We derive limiting proportions of partially noiseless channels for such a class. The results of this study are proved by an argument of convergent sequences, inspired by Alsan and Telatar's simple proof of polarization, and without martingale convergence theorems for polarization process.Comment: 31 pages; 1 figure; 1 table; a short version of this paper has been submitted to the 2018 IEEE International Symposium on Information Theory (ISIT2018

    Countably Infinite Multilevel Source Polarization for Non-Stationary Erasure Distributions

    Full text link
    Polar transforms are central operations in the study of polar codes. This paper examines polar transforms for non-stationary memoryless sources on possibly infinite source alphabets. This is the first attempt of source polarization analysis over infinite alphabets. The source alphabet is defined to be a Polish group, and we handle the Ar{\i}kan-style two-by-two polar transform based on the group. Defining erasure distributions based on the normal subgroup structure, we give recursive formulas of the polar transform for our proposed erasure distributions. As a result, the recursive formulas lead to concrete examples of multilevel source polarization with countably infinite levels when the group is locally cyclic. We derive this result via elementary techniques in lattice theory.Comment: 12 pages, 1 figure, a short version has been accepted by the 2019 IEEE International Symposium on Information Theory (ISIT2019

    Motion of the Tippe Top : Gyroscopic Balance Condition and Stability

    Full text link
    We reexamine a very classical problem, the spinning behavior of the tippe top on a horizontal table. The analysis is made for an eccentric sphere version of the tippe top, assuming a modified Coulomb law for the sliding friction, which is a continuous function of the slip velocity v⃗P\vec v_P at the point of contact and vanishes at v⃗P=0\vec v_P=0. We study the relevance of the gyroscopic balance condition (GBC), which was discovered to hold for a rapidly spinning hard-boiled egg by Moffatt and Shimomura, to the inversion phenomenon of the tippe top. We introduce a variable ξ\xi so that ξ=0\xi=0 corresponds to the GBC and analyze the behavior of ξ\xi. Contrary to the case of the spinning egg, the GBC for the tippe top is not fulfilled initially. But we find from simulation that for those tippe tops which will turn over, the GBC will soon be satisfied approximately. It is shown that the GBC and the geometry lead to the classification of tippe tops into three groups: The tippe tops of Group I never flip over however large a spin they are given. Those of Group II show a complete inversion and the tippe tops of Group III tend to turn over up to a certain inclination angle θf\theta_f such that θf<π\theta_f<\pi, when they are spun sufficiently rapidly. There exist three steady states for the spinning motion of the tippe top. Giving a new criterion for stability, we examine the stability of these states in terms of the initial spin velocity n0n_0. And we obtain a critical value ncn_c of the initial spin which is required for the tippe top of Group II to flip over up to the completely inverted position.Comment: 52 pages, 11 figures, to be published in SIAM Journal on Applied Dynamical Syste
    • …
    corecore