1,507 research outputs found

    Markov processes follow from the principle of Maximum Caliber

    Full text link
    Markov models are widely used to describe processes of stochastic dynamics. Here, we show that Markov models are a natural consequence of the dynamical principle of Maximum Caliber. First, we show that when there are different possible dynamical trajectories in a time-homogeneous process, then the only type of process that maximizes the path entropy, for any given singlet statistics, is a sequence of identical, independently distributed (i.i.d.) random variables, which is the simplest Markov process. If the data is in the form of sequentially pairwise statistics, then maximizing the caliber dictates that the process is Markovian with a uniform initial distribution. Furthermore, if an initial non-uniform dynamical distribution is known, or multiple trajectories are conditioned on an initial state, then the Markov process is still the only one that maximizes the caliber. Second, given a model, MaxCal can be used to compute the parameters of that model. We show that this procedure is equivalent to the maximum-likelihood method of inference in the theory of statistics.Comment: 4 page

    Dynamical critical quantum sensing with a single parametrically-driven nonlinear resonator

    Full text link
    Critical phenomena of quantum systems are useful for enhancement of quantum sensing. We here investigate the performance of a sensing scheme, where the signal is encoded in the dynamically-evolving state of an oscillator, featuring a competition of the Kerr nonlinearity and parametric driving. We calculate the quantum Fisher information, and perform a simulation, which confirms the criticality-enabled enhancement. We further detail the response of one of the quadratures to the variation of the control parameter. The numerical results reveal that its inverted variance exhibits a diverging behavior at the critical point.Comment: 6 pages, 7 figure

    Measuring the flatness of focal plane for very large mosaic CCD camera

    Full text link
    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k×\times2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.Comment: Presented at SPIE Conference,Ground-based and Airborne Instrumentation for Astronomy III, San Diego, 201

    Verifying Real-Time Systems using Explicit-time Description Methods

    Get PDF
    Timed model checking has been extensively researched in recent years. Many new formalisms with time extensions and tools based on them have been presented. On the other hand, Explicit-Time Description Methods aim to verify real-time systems with general untimed model checkers. Lamport presented an explicit-time description method using a clock-ticking process (Tick) to simulate the passage of time together with a group of global variables for time requirements. This paper proposes a new explicit-time description method with no reliance on global variables. Instead, it uses rendezvous synchronization steps between the Tick process and each system process to simulate time. This new method achieves better modularity and facilitates usage of more complex timing constraints. The two explicit-time description methods are implemented in DIVINE, a well-known distributed-memory model checker. Preliminary experiment results show that our new method, with better modularity, is comparable to Lamport's method with respect to time and memory efficiency

    Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering

    Get PDF
    We report the observation of multiple phonon satellite features in ultra thin superlattices of form nnSrIrO3_3/mmSrTiO3_3 using resonant inelastic x-ray scattering. As the values of nn and mm vary the energy loss spectra show a systematic evolution in the relative intensity of the phonon satellites. Using a closed-form solution for the cross section, we extract the variation in the electron-phonon coupling strength as a function of nn and mm. Combined with the negligible carrier doping into the SrTiO3_3 layers, these results indicate that tuning of the electron-phonon coupling can be effectively decoupled from doping. This work showcases both a feasible method to extract the electron-phonon coupling in superlattices and unveils a potential route for tuning this coupling which is often associated with superconductivity in SrTiO3_3-based systems.Comment: 4 pages, 5 figure

    Increasing utilization of Internet-based resources following efforts to promote evidence-based medicine: a national study in Taiwan

    Get PDF
    BACKGROUND: Since the beginning of 2007, the National Health Research Institutes has been promoting the dissemination of evidence-based medicine (EBM). The current study examined longitudinal trends of behaviors in how hospital-based physicians and nurses have searched for medical information during the spread of EBM. METHODS: Cross-sectional postal questionnaire surveys were conducted in nationally representative regional hospitals of Taiwan thrice in 2007, 2009, and 2011. Demographic data were gathered concerning gender, age, working experience, teaching appointment, academic degree, and administrative position. Linear and logistic regression models were used to examine predictors and changes over time. RESULTS: Data from physicians and nurses were collected in 2007 (n = 1156), 2009 (n = 2975), and 2011 (n = 3999). There were significant increases in the use of four Internet-based resources – Web portals, online databases, electronic journals, and electronic books – across the three survey years among physicians and nurses (p < 0.001). Access to textbooks and printed journals, however, did not change over the 4-year study period. In addition, there were significant relationships between the usage of Internet-based resources and users’ characteristics. Age and faculty position were important predictors in relation to the usage among physicians and nurses, while academic degree served as a critical factor among nurses only. CONCLUSIONS: Physicians and nurses used a variety of sources to look for medical information. There was a steady increase in use of Internet-based resources during the diffusion period of EBM. The findings highlight the importance of the Internet as a prominent source of medical information for main healthcare professionals
    • …
    corecore