91 research outputs found
Interpolation in variable exponent spaces
In this paper we study both real and complex interpolation in the recently
introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also
take advantage of some interpolation results to study a trace property and some
pseudodifferential operators acting in the variable index Besov scale
Variable exponent Besov-Morrey spaces
In this paper we introduce Besov-Morrey spaces with all indices variable and study some fundamental properties. This includes a description in terms of Peetre maximal functions and atomic and molecular decompositions. This new scale of non-standard function spaces requires the introduction of variable exponent mixed Morrey-sequence spaces, which in turn are defined within the framework of semimodular spaces. In particular, we obtain a convolution inequality involving special radial kernels, which proves to be a key tool in this work.publishe
Private lands habitat programs benefit California's native birds
To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites
Experimental simulations of methane-oriented underground coal gasification using hydrogen - The effect of coal rank and gasification pressure on the hydrogasification process
This paper presents a series of surface experimental simulations of methane-oriented underground coal gasification using hydrogen as gasification medium. The main aim of the experiments conducted was to evaluate the feasibility of methane-rich gas production through the in situ coal hydrogasification process. Two multi-day trials were carried out using large scale gasification facilities designed for ex situ experimental simulations of the underground coal gasification (UCG) process. Two different coals were investigated: the “Six Feet” semi-anthracite (Wales) and the “Wesoła" hard coal (Poland). The coal samples were extracted directly from the respective coal seams in the form of large blocks. The gasification tests were conducted in the artificial coal seams (0.41 × 0.41 × 3.05 m) under two distinct pressure regimes - 20 and 40 bar. The series of experiments conducted demonstrated that the physicochemical properties of coal (coal rank) considerably affect the hydrogasification process. For both gasification pressures applied, gas from “Six Feet” semi-anthracite was characterized by a higher content of methane. The average CH4 concentration for “Six Feet” experiment during the H2 stage was 24.12% at 20 bar and 27.03% at 40 bar. During the hydrogasification of “Wesoła" coal, CH4 concentration was 19.28% and 21.71% at 20 and 40 bar, respectively. The process was characterized by high stability and reproducibility of conditions favorable for methane formation in the whole sequence of gasification cycles. Although the feasibility of methane-rich gas production by underground hydrogasification was initially demonstrated, further techno-economic studies are necessary to assess the economic feasibility of methane production using this process
An analysis of the quality of experimental design and reliability of results in tribology research
In recent years several high profile projects have questioned the repeatability and validity of scientific research in the fields of psychology and medicine. In general, these studies have shown or estimated that less than 50% of published research findings are true or replicable even when no breaches of ethics are made. This high percentage stems from widespread poor study design; either through the use of underpowered studies or designs that allow the introduction of bias into the results.
In this work, we have aimed to assess, for the first time, the prevalence of good study design in the field of tribology. A set of simple criteria for factors such as randomisation, blinding, use of control and repeated tests has been made. These criteria have been used in a mass review of the output of five highly regarded tribology journals for the year 2017. In total 379 papers were reviewed by 26 reviewers, 28% of the total output of the journals selected for 2017.
Our results show that the prevalence of these simple aspects of study design is poor. Out of 290 experimental studies, 2.2% used any form of blinding, 3.2% used randomisation of either the tests or the test samples, while none randomised both. 30% repeated experiments 3 or more times and 86% of those who repeated tests used single batches of test materials. 4.4% completed statistical tests on their data.
Due to the low prevalence of repeated tests and statistical analysis it is impossible to give a realistic indication of the percentage of the published works that are likely to be false positives, however these results compare poorly to other more well studied fields. Finally, recommendations for improved study design for researchers and group design for research group leaders are given
Providing predictable and optimised traction and breaking through tribo-chemical understanding of the wheel / rail interface
The chemical, physical, and tribological features of the wheel / rail contact are studied through a combination of environmental monitoring, chemical analysis, rheology, and tribo-testing. The work presents novel platforms for the combined analysis and physical testing of rail steel surfaces and oxide pastes, including friction mapping of surfaces, which have clear use in wheel / rail contact research as well as wider applications. X-Ray Diffraction identified eight iron compounds including iron oxides and iron oxide-hydroxides on the surface of operational rail-tracks. Trackside environmental monitoring revealed variation in conditions due to shaded areas and presence of vegetation. The railhead temperature is shown to lag behind that of the environment and occasionally below the dew point temperature; this is shown to happen most frequently in the early morning and can be related to the frequency of low adhesion events. A low adhesion condition was linked to the presence of wĂĽstite, iron oxide-hydroxides, and small amounts of dew on the railhead. A newly proposed mechanism for the loss of traction due to oxides and debris on the railhead, in combination with small amounts of water, is supported by rheological and twin-disc tribo-testing which considers the extent of material entrainment as well as effect within the contact. Aqueous oxide pastes are shown to exhibit behaviours of Bingham-plastic fluids displaying both solid and liquid properties. High yield shear stress pastes are more entrained in the wheel / rail contact. High viscosity pastes more effectively transmit tractional forces through their layer and decrease the coefficient of traction less as a result. Results from the work provide new insights into how the surface of the railhead changes with environmental conditions as well as how oxide/water mixtures interact within the wheel / rail contact, including potential uses of viscous high shear stress pastes to control traction levels
- …