4 research outputs found

    Discoloration of textile dyes by spent mushroom substrate of Agaricus bisporus

    Get PDF
    The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents

    Enzymatic and non-enzymatic removal of organic micropollutants with spent mushroom substrate of Agaricus bisporus

    Get PDF
    Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0–26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs

    Incorporation of an Intermediate Polyelectrolyte Layer for Improved Interfacial Polymerization on PAI Hollow Fiber Membranes

    Get PDF
    In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and trimesoyl chloride forms a dense selective polyamide (PA) layer on the inside of the hollow fiber. The resulting thin-film composite hollow fiber membranes show high NaCl rejections of around 96% with a pure water permeability of 1.2 LMH/bar. The high success rate of fabricating the thin-film composite hollow fiber membrane proves our hypothesis of a supporting effect of the intermediate PEI layer on separation layer formation. This work marks a step towards the development of a robust method for the large-scale manufacturing of thin-film composite hollow fiber membranes for reverse osmosis and nanofiltration

    Foulant Identification and Performance Evaluation of Antiscalants in Increasing the Recovery of a Reverse Osmosis System Treating Anaerobic Groundwater

    No full text
    The objectives of this study are to assess the performance of antiscalants in increasing the recovery (≥85%) of a reverse osmosis (RO) plant treating anaerobic groundwater (GW) in Kamerik (the Netherlands), and to identify scalants/foulant that may limit RO recovery. Five different commercially available antiscalants were compared on the basis of their manufacturer-recommended dose. Their ability to increase the recovery from 80% to a target of 85% was evaluated in pilot-scale measurements with anaerobic GW and in once-through lab-scale RO tests with synthetic (artificial) feedwater. A membrane autopsy was performed on the tail element(s) with decreased permeability. X-ray photoelectron spectroscopy (XPS) analysis indicated that calcium phosphate was the primary scalant causing permeability decline at 85% recovery and limiting RO recovery. The addition of antiscalant had no positive effect on RO operation and scaling prevention, since at 85% recovery, permeability of the last stage decreased with all five antiscalants, while no decrease in permeability was observed without the addition of antiscalant at 80% recovery. In addition, in lab-scale RO tests executed with synthetic feed water containing identical calcium and phosphate concentrations as the anaerobic GW, calcium phosphate scaling occurred both with and without antiscalant at 85% recovery, while at 80% recovery without antiscalant, calcium phosphate did not precipitate in the RO element. In brief, calcium phosphate appeared to be the main scalant limiting RO recovery, and antiscalants were unable to prevent calcium phosphate scaling or to achieve a recovery of 85% or highe
    corecore