2,223 research outputs found
Structure of 8B from elastic and inelastic 7Be+p scattering
Motivation: Detailed experimental knowledge of the level structure of light
weakly bound nuclei is necessary to guide the development of new theoretical
approaches that combine nuclear structure with reaction dynamics.
Purpose: The resonant structure of 8B is studied in this work.
Method: Excitation functions for elastic and inelastic 7Be+p scattering were
measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6
and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions
was performed.
Results: New low-lying resonances at 1.9, 2.5, and 3.3 MeV in 8B are reported
with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the
Time Dependent Continuum Shell (TDCSM) model and ab initio no-core shell
model/resonating-group method (NCSM/RGM) calculations is performed. This work
is a more detailed analysis of the data first published as a Rapid
Communication. [J.P. Mitchell, et al, Phys. Rev. C 82, 011601(R) (2010)]
Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by
some models at relatively low energy but never observed experimentally is an
important step toward understanding the structure of 8B. Their identification
was aided by having both elastic and inelastic scattering data. Direct
comparison of the cross sections and phase shifts predicted by the TDCSM and ab
initio No Core Shell Model coupled with the resonating group method is of
particular interest and provides a good test for these theoretical approaches.Comment: 15 pages, 19 figures, 3 tables, submitted to PR
Low-lying states in 8B
Excitation functions of elastic and inelastic 7Be+p scattering were measured
in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of
the excitation functions provides strong evidence for new positive parity
states in 8B. A new 2+ state at an excitation energy of 2.55 MeV was observed
and a new 0+ state at 1.9 MeV is tentatively suggested. The R-matrix and Time
Dependent Continuum Shell Model were used in the analysis of the excitation
functions. The new results are compared to the calculations of contemporary
theoretical models.Comment: 6 pages, 5 figures, accepted as Rapid Communication in Phys. Rev.
Extreme alpha-clustering in the 18O nucleus
The structure of the 18O nucleus at excitation energies above the alpha decay
threshold was studied using 14C+alpha resonance elastic scattering. A number of
states with large alpha reduced widths have been observed, indicating that the
alpha-cluster degree of freedom plays an important role in this N not equal Z
nucleus. However, the alpha-cluster structure of this nucleus is very different
from the relatively simple pattern of strong alpha-cluster quasi-rotational
bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced
width exceeding the single particle limit was identified at an excitation
energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are
common in light nuclei and give possible explanations of this feature.Comment: 4 pages, 2 figures, 1 table. Resubmission with minor changes for
clarity, including removal of one figur
- …