4 research outputs found

    Combination therapy with hydrogen peroxide and irradiation promotes an abscopal effect in mouse models

    Get PDF
    Hydrogen peroxide (H2O2) induces oxidative stress and cytotoxicity, and can be used for treating cancers in combination with radiotherapy. A product comprising H2O2 and sodium hyaluronate has been developed as a radiosensitizer. However, the effects of H2O2 on antitumor immunity remain unclear. To investigate the effects of H2O2, especially the abscopal effect when combined with radiotherapy (RT), we implanted murine tumor cells simultaneously in two locations in mouse models: the hind limb and back. H2O2 mixed with sodium hyaluronate was injected intratumorally, followed by irradiation only at the hind limb lesion. No treatment was administered to the back lesion. The H2O2/RT combination significantly reduced tumor growth at the noninjected/nonirradiated site in the back lesion, whereas H2O2 or RT individually did not reduce tumor growth. Flow cytometric analyses of the tumor-draining lymph nodes in the injected/irradiated areas showed that the number of dendritic cells increased significantly with maturation in the H2O2/RT combination group. In addition, analyses of tumor-infiltrating lymphocytes showed that the number of CD8+ (cluster of differentiation 8) T cells and the frequency of IFN-γ+ (interferon gamma) CD8+ T cells were higher in the noninjected/nonirradiated tumors in the H2O2/RT group compared to those in the other groups. PD-1 (programmed death receptor 1) blockade further increased the antitumor effect against noninjected/nonirradiated tumors in the H2O2/RT group. Intratumoral injection of H2O2 combined with RT therefore induces an abscopal effect by activating antitumor immunity, which can be further enhanced by PD-1 blockade. These findings promote the development of H2O2/RT therapy combined with cancer immunotherapies, even for advanced cancers

    Low frequency of intracranial progression in advanced NSCLC patients treated with cancer immunotherapies

    No full text
    Intracranial metastases are common in nonsmall-cell lung cancer (NSCLC) patients, whose prognosis is very poor. In addition, intracranial progression is common during systemic treatments due to the inability to penetrate central nervous system (CNS) barriers, whereas the intracranial effects of cancer immunotherapies remain unclear. We analyzed clinical data to evaluate the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies compared with those treated without PD-1 blockade therapies, and found that the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies was significantly lower than that in patients treated with cytotoxic chemotherapies. In murine models, intracranial rechallenged tumors after initial rejection by PD-1 blockade were suppressed. Accordingly, long-lived memory precursor effector T cells and antigen-specific T cells were increased by PD-1 blockade in intracranial lesions. However, intracranial rechallenged different tumors are not suppressed. Our results indicate that cancer immunotherapies can prevent intracranial progression, maintaining long-term effects intracranially as well as systemically. If intracranial recurrence occurs during the treatment with PD-1 blockade therapies, aggressive local therapies could be worthwhile
    corecore