57 research outputs found

    Comprehensively Surveying Structure and Function of RING Domains from Drosophila melanogaster

    Get PDF
    Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold and formation of catalytic core in which related residues and regions exhibit preferential evolutionary conservation

    The interaction of Thrombospondins with extracellular matrix proteins

    Get PDF
    The thrombospondins (TSPs) are a family of five matricellular proteins that appear to function as adapter molecules to guide extracellular matrix synthesis and tissue remodeling in a variety of normal and disease settings. Various TSPs have been shown to bind to fibronectin, laminin, matrilins, collagens and other extracellular matrix (ECM) proteins. The importance of TSP-1 in this context is underscored by the fact that it is rapidly deposited at the sites of tissue damage by platelets. An association of TSPs with collagens has been known for over 25Β years. The observation that the disruption of the TSP-2 gene in mice leads to collagen fibril abnormalities provided important in vivo evidence that these interactions are physiologically important. Recent biochemical studies have shown that TSP-5 promotes collagen fibril assembly and structural studies suggest that TSPs may interact with collagens through a highly conserved potential metal ion dependent adhesion site (MIDAS). These interactions are critical for normal tissue homeostasis, tumor progression and the etiology of skeletal dysplasias

    Development of a Lateral Flow Strip with a Positive Readout for the On-Site Detection of Aflatoxin B1

    No full text
    Aflatoxin B1 is one of the contamination indicators for food safety monitoring. The rapid and effective assessment and determination of AFB1 in food is of great importance to dietary safety. The lateral flow assay shows advantages in its simplicity, and rapidity, and provides a visual readout, while the available lateral flow assay for AFB1 requires a competitive format that produces readings inversely proportional to the AFB1 concentration, which is counterintuitive and may lead to a potential misinterpretation of the results. Herein, we developed a positive readout aptamer-based lateral flow strip (Apt-strip) for the detection of AFB1. This Apt-strip relies on the competition between AFB1 and fluorescein-labeled complementary DNA strands (FAM-cDNA) for affinity binding to limited aptamers against AFB1 (AFB1-Apt). In the absence of AFB1, AFB1-Apt hybridizes with FAM-cDNA. No signal at the T-line of the Apt-strip was observed. In contrast, AFB1-Apt binds to AFB1 in the sample, and then a part of the FAM-cDNA is hybridized with the free AFB1-Apt, at which time the other unreacted FAM-cDNA is captured by A35-Apt on the T-line. The signal was observed. This method achieved fast detection of AFB1 with a detection limit (DL) of 0.1 ng/mL, positive readout, and increased sensitivity

    Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses

    No full text
    Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems

    Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium-sulfur battery

    No full text
    Recently, various sulfur anchoring materials have been implied to improve the performance of lithium sulfur (Li-S) battery. Herein, we introduced graphene-like g-C3N4 nanosheets (GCN), a sheet-like material with high nitrogen (N) content of 56 wt % and high specific surface area of 209.8 m(2) g(-1), as a host to anchor lithium polysulfides. The composite with 70.4 wt % sulfur loading exhibited an initial reversible capacity of 1250 mA h g(-1) at 0.05C and a discharge capacity of 578.0 mA h g(-1) at 0.5C over 750 cycles. The excellent electrochemical performances can be attributed to the abundant N atoms in the GCN, which have the ability to anchor lithium polysulfides. Meanwhile, the high surface area of the GCN prevent sulfur, Li2S2 and Li2S from agglomerating. The result demonstrates that the GCN with abundant N atoms and high specific surface area could improve the electrochemical performance of Li-S battery effectively. (C) 2016 Elsevier Ltd. All rights reserved

    Asymptomatic versus symptomatic solid pseudopapillary tumors of the pancreas: clinical and MDCT manifestations

    No full text
    Abstract Background To delineate the features of multi-detector computed tomography (MDCT) images and clinical characteristics of pancreatic solid pseudopapillary tumors (SPTs) of the pancreas in asymptomatic patients and compare these features and characteristics between asymptomatic and symptomatic patients. Methods This work is a retrospective study approved by our institutional review board. MDCT images and clinical data of 109 patients with pathologically proven SPTs obtained from October 2008 to October 2016 were reviewed. Patients were categorized into two groups: asymptomatic patients and patients with symptomatic disease. Cases were reviewed to determine the reason for detection, intervention, shape, diameter, location, calcification, encapsulation, internal composition, CT attenuation, enhancement pattern, and tumor pathology. Clinical factors and imaging features were also compared between groups. Statistical analysis was performed using Ο‡2 and t-tests. Results Data from 49 asymptomatic and 60 symptomatic patients were collected. Asymptomatic SPTs were identified most frequently during routine health examination (18 patients, 36.7%), various screening purposes (12 patients, 24.5%), and traumatic injury (9 patients, 18.4%). Except for a smaller tumor size (5.8 cm in asymptomatic SPTs vs. 7.4 cm in symptomatic SPTs, P = 0.023), the clinical factors or imaging features of asymptomatic patients were very similar to those of symptomatic patients. Conclusions The current research is the first single-center study to characterize SPTs in asymptomatic patients. Asymptomatic SPTs are gradually being identified with greater frequency. Although generally smaller in size than that in symptomatic patients, an asymptomatic pancreatic mass with the typical imaging features of SPT may be found, the treatment for which is similar to that for symptomatic patients. Evaluating asymptomatic SPTs requires further systematic and multi-center trials

    Platelet P2Y12 is involved in murine pulmonary metastasis.

    Get PDF
    The involvement of platelets in tumor progression is well recognized. The depletion of circulating platelets or pharmacologic inhibitors of platelet activation decreases the metastatic potential of circulating tumor cells in metastasis mouse models. The platelet ADP receptor P2Y12 amplifies the initial hemostatic responses activated by a variety of platelet agonists and stabilizes platelet aggregation, playing a crucial role in granule secretion, integrin activation and thrombus formation. However, the relationship between P2Y12 and tumor progression is not clear. In our study, the Lewis Lung Carcinoma (LLC) spontaneous metastatic mouse model was used to evaluate the role of P2Y12 in metastasis. The results demonstrated that P2Y12 deficiency significantly reduced pulmonary metastasis. Further studies indicated that P2Y12 deficiency diminished the ability of LLC cells to induce platelet shape change and release of active TGFΞ²1 by a non-contact dependent mechanism resulting in a diminished, platelet-induced EMT-like transformation of the LLC cells, and that transformation probably is a prerequisite of LLC cell metastasis. Immunohistochemical analyses indicated an obvious P2Y12 deficiency related attenuation of recruitment of VEGFR1+ bone marrow derived cell clusters, and extracellular matrix fibronectin deposition in lungs, which presumably are required for pre-metastatic niche formation. In contrast to the LLC cells, non-epithelial melanoma B16 cells induced platelet aggregation in a cell number and P2Y12-dependent manner. Also, a platelet induced EMT-like transformation of B16 cells is dependent on P2Y12. In agreement with the LLC cell model, platelet P2Y12 deficiency also results in significantly less lung metastasis in the B16 melanoma experimental metastasis model. These results demonstrate that P2Y12 is a safe drug target for anti-thrombotic therapy, and that P2Y12 may serve as a new target for inhibition of tumor metastasis

    A proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans

    No full text
    Abstract Background Conventional clinical PET scanners typically have an axial field of view (AFOV) of 15–30Β cm, resulting in limited coverage and relatively low photon detection efficiency. Taking advantage of the development of long-axial PET/CT, the uEXPLORER PET/CT scanner with an axial coverage of 194Β cm increases the effective count rate by approximately 40 times compared to that of conventional PET scanners. Ordered subset expectation maximization (OSEM) is the most widely used iterative algorithm in PET. The major drawback of OSEM is that the iteration process must be stopped before convergence to avoid image degradation due to excessive noise. A new Bayesian penalized-likelihood iterative PET reconstruction, named HYPER iterative, was developed and is now available on the uEXPLORER total-body PET/CT, which incorporates a noise control component by using a penalty function in each iteration and finds the maximum likelihood solution through repeated iterations. To date, its impact on lesion visibility in patients with a full injected dose or half injected dose is unclear. The goal of this study was to determine a proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. Results The uEXPLORER total-body PET/CT images reconstructed using both OSEM and HYPER iterative algorithms of 20 tumour patients were retrospectively reviewed. The quality of the 5Β min PET image was excellent (score 5) for all of the dose and reconstruction methods. Using the HYPER iterative method, the PET images reached excellent quality at 1Β min with full-dose PET and at 2Β min with half-dose PET. The PET image reached a similar excellent quality at 2Β min with a full dose and at 3Β min with a half dose using OSEM. The noise in the OSEM reconstruction was higher than that in the HYPER iterative. Compared to OSEM, the HYPER iterative had a slightly higher SUVmax and TBR of the lesions for large positive lesions (β‰₯ 2Β cm) (SUVmax: up to 9.03% higher in full dose and up to 12.52% higher in half dose; TBR: up to 8.69% higher in full dose and up to 23.39% higher in half dose). For small positive lesions (≀ 10Β mm), the HYPER iterative had an obviously higher SUVmax and TBR of the lesions (SUVmax: up to 45.21% higher in full dose and up to 74.96% higher in half dose; TBR: up to 44.91% higher in full dose and up to 93.73% higher in half dose). Conclusions A 1Β min scan with a full dose and a 2Β min scan with a half dose are optimal for clinical diagnosis using the HYPER iterative and 2Β min and 3Β min for OSEM. For quantification of the small lesions, HYPER iterative reconstruction is preferred
    • …
    corecore