28 research outputs found

    Team 6: Joint Capability Metamodel-Test-Metamodel Integration with Data Farming

    Get PDF
    from Scythe : Proceedings and Bulletin of the International Data Farming Community, Issue 2 Workshop 14US adversaries are continuously seeking new ways to threaten US interests at home and abroad. In order to counter these threats, now more than ever, commanders must seek to leverage existing and emerging joint capabilities effectively in a variety of unique contexts. Achieving mission effectiveness in today's joint operational environment demands robust synergy among a wide array of mission-critical Service systems and capabilities

    Global sensitivity analysis of stochastic computer models with joint metamodels

    Get PDF
    The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of input variables gives always the same output value. This paper proposes a global sensitivity analysis methodology for stochastic computer codes, for which the result of each code run is itself random. The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, nonparametric joint models are discussed and a new Gaussian process-based joint model is proposed. The relevance of these models is analyzed based upon two case studies. Results show that the joint modeling approach yields accurate sensitivity index estimatiors even when heteroscedasticity is strong

    Simulation of a semiconductor manufacturing line

    No full text

    整数計画問題のためのbb-Grobner基底変換アルゴリズム (Computer Algebra : Algorithms, Implementations and Applications)

    Get PDF
    It is widely accepted that the immune system undergoes age-related changes correlating with increased disease in the elderly. T cell subsets have been implicated. The aim of this work is firstly to implement and validate a simulation of T regulatory cell (Treg) dynamics throughout the lifetime, based on a model by Baltcheva. We show that our initial simulation produces an inversion between precursor and mature Tregs at around 20 years of age, though the output differs significantly from the original laboratory dataset. Secondly, this report discusses development of the model to incorporate new data from a cross-sectional study of healthy blood donors addressing balance between Tregs and Th17 cells with novel markers for Treg. The potential for simulation to add insight into immune aging is discussed
    corecore