3 research outputs found
Uncovering a Mystery of the Isoflavonoid Metabolon: Identification and Characterization of the Arogenate Dehydratase Gene Family in Soybean
Soybean (Glycine max) is a vastly important, multi-billion dollar global commodity; but this crop’s yields are under threat from the pathogen Phytophthora sojae, which causes extensive stem and root rot in soybean crops. Isoflavonoids, a metabolite class unique to legumes, are a promising research target to combat P. sojae. Isoflavonoids are released as phytoalexins in response to stress, and also facilitate interactions with nitrogen-fixing rhizobial bacteria through nodule formation. An isoflavonoid biosynthesis metabolon was discovered in soybean through co-immunoprecipitation, anchored to the endoplasmic reticulum by isoflavone synthase (IFS) and Cinnamate 4-hydroxylase, two cytochrome P450 enzymes. One of the IFS-interacting partners discovered was arogenate dehydratase (ADT), which synthesizes phenylalanine, the precursor to the phenylpropanoid pathway. Generally ADTs are localized to the chloroplast, making the interaction with IFS seemingly impossible. In the current study, 9 GmADTs were identified, and the GmADT-GmIFS interaction was confirmed. These findings broaden the current knowledge of the isoflavonoid metabolon
Soybean AROGENATE DEHYDRATASES (GmADTs): involvement in the cytosolic isoflavonoid metabolon or trans-organelle continuity?
Soybean (Glycine max) produces a class of phenylalanine (Phe) derived specialized metabolites, isoflavonoids. Isoflavonoids are unique to legumes and are involved in defense responses in planta, and they are also necessary for nodule formation with nitrogen-fixing bacteria. Since Phe is a precursor of isoflavonoids, it stands to reason that the synthesis of Phe is coordinated with isoflavonoid production. Two putative AROGENATE DEHYDRATASE (ADT) isoforms were previously co-purified with the soybean isoflavonoid metabolon anchor ISOFLAVONE SYNTHASE2 (GmIFS2), however the GmADT family had not been characterized. Here, we present the identification of the nine member GmADT family. We determined that the GmADTs share sequences required for enzymatic activity and allosteric regulation with other characterized plant ADTs. Furthermore, the GmADTs are differentially expressed, and multiple members have dual substrate specificity, also acting as PREPHENATE DEHYDRATASES. All GmADT isoforms were detected in the stromules of chloroplasts, and they all interact with GmIFS2 in the cytosol. In addition, GmADT12A interacts with multiple other isoflavonoid metabolon members. These data substantiate the involvement of GmADT isoforms in the isoflavonoid metabolon
Soybean AROGENATE DEHYDRATASES (GmADTs): involvement in the cytosolic isoflavonoid metabolon or trans-organelle continuity?
Soybean (Glycine max) produces a class of phenylalanine (Phe) derived specialized metabolites, isoflavonoids. Isoflavonoids are unique to legumes and are involved in defense responses in planta, and they are also necessary for nodule formation with nitrogen-fixing bacteria. Since Phe is a precursor of isoflavonoids, it stands to reason that the synthesis of Phe is coordinated with isoflavonoid production. Two putative AROGENATE DEHYDRATASE (ADT) isoforms were previously co-purified with the soybean isoflavonoid metabolon anchor ISOFLAVONE SYNTHASE2 (GmIFS2), however the GmADT family had not been characterized. Here, we present the identification of the nine member GmADT family. We determined that the GmADTs share sequences required for enzymatic activity and allosteric regulation with other characterized plant ADTs. Furthermore, the GmADTs are differentially expressed, and multiple members have dual substrate specificity, also acting as PREPHENATE DEHYDRATASES. All GmADT isoforms were detected in the stromules of chloroplasts, and they all interact with GmIFS2 in the cytosol. In addition, GmADT12A interacts with multiple other isoflavonoid metabolon members. These data substantiate the involvement of GmADT isoforms in the isoflavonoid metabolon