25 research outputs found

    Plasma Proteome Profiles Associated with Inflammation, Angiogenesis, and Cancer

    Get PDF
    Tumor development is accompanied by a complex host systemic response, which includes inflammatory and angiogenic reactions. Both tumor-derived and systemic response proteins are detected in plasma from cancer patients. However, given their non-specific nature, systemic response proteins can confound the detection or diagnosis of neoplasia. Here, we have applied an in-depth quantitative proteomic approach to analyze plasma protein changes in mouse models of subacute irritant-driven inflammation, autoreactive inflammation, and matrix associated angiogenesis and compared results to previously described findings from mouse models of polyoma middle T-driven breast cancer and Pdx1-Cre KrasG12D Ink4a/Arf lox/lox -induced pancreatic cancer. Among the confounding models, approximately 1/3 of all quantified plasma proteins exhibited a significant change in abundance compared to control mice. Of the proteins that changed in abundance, the majority were unique to each model. Altered proteins included those involved in acute phase response, inflammation, extracellular matrix remodeling, angiogenesis, and TGFΞ² signaling. Comparison of changes in plasma proteins between the confounder models and the two cancer models revealed proteins that were restricted to the cancer-bearing mice, reflecting the known biology of these tumors. This approach provides a basis for distinguishing between protein changes in plasma that are cancer-related and those that are part of a non-specific host response

    Loss of p19Arf Facilitates the Angiogenic Switch and Tumor Initiation in a Multi-Stage Cancer Model via p53-Dependent and Independent Mechanisms

    Get PDF
    The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET) driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag), stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms

    Serum S100A6 Concentration Predicts Peritoneal Tumor Burden in Mice with Epithelial Ovarian Cancer and Is Associated with Advanced Stage in Patients

    Get PDF
    BACKGROUND:Ovarian cancer is the 5th leading cause of cancer related deaths in women. Five-year survival rates for early stage disease are greater than 94%, however most women are diagnosed in advanced stage with 5 year survival less than 28%. Improved means for early detection and reliable patient monitoring are needed to increase survival. METHODOLOGY AND PRINCIPAL FINDINGS:Applying mass spectrometry-based proteomics, we sought to elucidate an unanswered biomarker research question regarding ability to determine tumor burden detectable by an ovarian cancer biomarker protein emanating directly from the tumor cells. Since aggressive serous epithelial ovarian cancers account for most mortality, a xenograft model using human SKOV-3 serous ovarian cancer cells was established to model progression to disseminated carcinomatosis. Using a method for low molecular weight protein enrichment, followed by liquid chromatography and mass spectrometry analysis, a human-specific peptide sequence of S100A6 was identified in sera from mice with advanced-stage experimental ovarian carcinoma. S100A6 expression was documented in cancer xenografts as well as from ovarian cancer patient tissues. Longitudinal study revealed that serum S100A6 concentration is directly related to tumor burden predictions from an inverse regression calibration analysis of data obtained from a detergent-supplemented antigen capture immunoassay and whole-animal bioluminescent optical imaging. The result from the animal model was confirmed in human clinical material as S100A6 was found to be significantly elevated in the sera from women with advanced stage ovarian cancer compared to those with early stage disease. CONCLUSIONS:S100A6 is expressed in ovarian and other cancer tissues, but has not been documented previously in ovarian cancer disease sera. S100A6 is found in serum in concentrations that correlate with experimental tumor burden and with clinical disease stage. The data signify that S100A6 may prove useful in detecting and/or monitoring ovarian cancer, when used in concert with other biomarkers

    A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    Get PDF
    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight β€˜twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals

    Senescence comes of age

    Full text link
    Normal cells can respond to expression of activated oncogenes by initiating cellular senescence, a permanent state of proliferative arrest. But whether this process reflects a relevant anticancer mechanism has been debated. Several studies now show that oncogene- induced senescence can occur in vivo and provides a bona fide barrier to tumorigenesis
    corecore