4,482 research outputs found
A new method for obtaining the star formation law in galaxies
We present a new observational method to evaluate the star formation law as
formulated by Schmidt: the power-law expression assumed to relate the rate of
star formation in a volume of space to the local total gas volume density.
Volume densities in the clouds surrounding an OB association are determined
with a simple model which considers atomic hydrogen as a photodissociation
product on cloud surfaces. The photodissociating flux incident on the cloud is
computed from the far-UV luminosity of the OB association and the geometry. We
have applied this "PDR Method" to a sample of star-forming regions in M33 using
VLA 21-cm data for the HI and GALEX imagery in the far-UV. It provides an
estimate of the total volume density of hydrogen (atomic + molecular) in the
gas clouds surrounding the young star cluster. A logarithmic graph of the
cluster UV luminosity versus the surrounding gas density is a direct measure of
the star formation law. However, this plot is severely affected by
observational selection, rendering large areas of the diagram inaccessible to
the data. An ordinary least-squares regression fit therefore gives a strongly
biased result. Its slope primarily reflects the boundary defined when the 21-cm
line becomes optically thick, no longer reliably measuring the HI column
density. We use a maximum-likelihood statistical approach which can deal with
truncated and skewed data, taking into account the large uncertainties in the
derived total gas densities. The exponent we obtain for the Schmidt law in M33
is 1.4 \pm 0.2.Comment: Accepted for publication in Ap
Postnatal β2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle
Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated β adrenergic receptor (ADRβ) desensitization. Our objectives were to measure insulin-sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRβ2 agonist and ADRβ1/β3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose-stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR-AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole-bodyGUR were not different from controls.Of importance, ADRβ2 stimulation with β1/β3 inhibition increases both insulin sensitivity and whole-body glucose utilization in IUGR lambs. In IUGR and IUGR-AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates and ex vivo skeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR-AR skeletal muscle than in controls but GLUT1 was greater in IUGR-AR. ADRβ2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR-AR lambs heart rates were greater, which was independent of cardiac ADRβ1 activation. We conclude that targeted ADRβ2 stimulation improved whole-body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch-up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes
Feral swine \u3ci\u3eSus scrofa\u3c/i\u3e: a new threat to the remaining breeding wetlands of the Vulnerable reticulated flatwoods salamander \u3ci\u3eAmbystoma bishopi\u3c/i\u3e
Feral swine Sus scrofa have been implicated as a major threat to sensitive habitats and ecosystems as well as threatened wildlife. Nevertheless, direct and indirect impacts on threatened species (especially small, fossorial species) are not well documented. The decline of the U.S. federally endangered reticulated flatwoods salamander Ambystoma bishopi, categorized as Vulnerable on the IUCN Red List, has been rapid and there are few remaining breeding locations for this species. The flatwoods salamander depends on complex herbaceous vegetation in all life stages, including eggs, larvae and adults. Historically sets of hog tracks have been observed only occasionally in the vicinity of monitored reticulated flatwoods salamander breeding wetlands, and damage to the wetlands had never been recorded. However, during the autumn–winter breeding season of 2013-2014 we observed a large increase in hog sign, including extensive rooting damage, in known flatwoods salamander breeding wetlands. Our objective was to assess the amount of hog sign and damage in these wetlands and to take corrective management actions to curb additional impacts. Of 28 wetlands surveyed for hog sign, presence was recorded at 68%, and damage at 54%. Of the 11 sites known to be occupied by flatwoods salamanders in 2013-2014, 64% had presence, and 55% had damage. We found that regular monitoring of disturbance in wetland habitats was a valuable tool to determine when intervention was needed and to assess the effectiveness of intervention. Habitat damage caused by feral hogs poses a potentially serious threat to the salamanders, which needs to be mitigated using methods to control and exclude hogs from this sensitive habitat
Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver
The corrosion of Ag contaminated with NaCl particles in gaseous environments containing humidity and ozone was investigated. In particular, the effects of relative humidity and UV light illumination were quantitatively analyzed using a coulometric reduction technique. The atmospheric corrosion of Ag was greatly accelerated in the presence of ozone and UV light. Unlike bare Ag (i.e., with no NaCl particles on the surface), Ag with NaCl exhibited fast corrosion even in the dark, with no UV in the presence of ozone. Samples exposed to different outdoor environments and samples exposed in a salt spray chamber were studied for comparison. Ag corroded at extremely low rates in a salt spray chamber partly because of the combined absence of light and oxidizing agents such as ozone
Extreme AGN Feedback and Cool Core Destruction in the X-ray Luminous Galaxy Cluster MACS J1931.8-2634
We report on a deep, multiwavelength study of the galaxy cluster MACS
J1931.8-2634 using Chandra X-ray, Subaru optical, and VLA 1.4 GHz radio data.
This cluster (z=0.352) harbors one of the most X-ray luminous cool cores yet
discovered, with an equivalent mass cooling rate within the central 50 kpc is
approximately 700 solar masses/yr. Unique features observed in the central core
of MACSJ1931.8-2634 hint to a wealth of past activity that has greatly
disrupted the original cool core. We observe a spiral of relatively cool,
dense, X-ray emitting gas connected to the cool core, as well as highly
elongated intracluster light (ICL) surrounding the cD galaxy. Extended radio
emission is observed surrounding the central AGN, elongated in the east-west
direction, spatially coincident with X-ray cavities. The power input required
to inflate these `bubbles' is estimated from both the X-ray and radio emission
to reside between 4 and 14e45 erg/s, putting it among the most powerful jets
ever observed. This combination of a powerful AGN outburst and bulk motion of
the cool core have resulted in two X-ray bright ridges to form to the north and
south of the central AGN at a distance of approximately 25 kpc. The northern
ridge has spectral characteristics typical of cool cores and is consistent with
being a remnant of the cool core after it was disrupted by the AGN and bulk
motions. It is also the site of H-alpha filaments and young stars. The X-ray
spectroscopic cooling rate associated with this ridge is approximately 165
solar masses/yr, which agrees with the estimate of the star formation rate from
broad-band optical imaging (170 solar masses/yr). MACS J1931.8-2634 appears to
harbor one of most profoundly disrupted low entropy cores observed in a
cluster, and offers new insights into the survivability of cool cores in the
context of hierarchical structure formation.Comment: 19 pages, 15 figures, 5 tables. Accepted by MNRAS for publication
September 30 201
Recommended from our members
A Network of microRNAs Acts to Promote Cell Cycle Exit and Differentiation of Human Pancreatic Endocrine Cells.
Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming
Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites
The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error
Influenza Vaccine Effectiveness against Hospitalisation with Confirmed Influenza in the 2010-11 Seasons: A Test-negative Observational Study
Immunisation programs are designed to reduce serious morbidity and mortality from influenza, but most evidence supporting the effectiveness of this intervention has focused on disease in the community or in primary care settings. We aimed to examine the effectiveness of influenza vaccination against hospitalisation with confirmed influenza. We compared influenza vaccination status in patients hospitalised with PCR-confirmed influenza with patients hospitalised with influenza-negative respiratory infections in an Australian sentinel surveillance system. Vaccine effectiveness was estimated from the odds ratio of vaccination in cases and controls. We performed both simple multivariate regression and a stratified analysis based on propensity score of vaccination. Vaccination status was ascertained in 333 of 598 patients with confirmed influenza and 785 of 1384 test-negative patients. Overall estimated crude vaccine effectiveness was 57% (41%, 68%). After adjusting for age, chronic comorbidities and pregnancy status, the estimated vaccine effectiveness was 37% (95% CI: 12%, 55%). In an analysis accounting for a propensity score for vaccination, the estimated vaccine effectiveness was 48.3% (95% CI: 30.0, 61.8%). Influenza vaccination was moderately protective against hospitalisation with influenza in the 2010 and 2011 seasons
- …