43 research outputs found

    It is not all about the alpha:elevated expression of p53β variants is associated with lower probability of survival in a retrospective melanoma cohort

    Get PDF
    Background: Melanoma is the deadliest type of skin cancer and despite improvements in treatment outcomes, melanoma claimed 57,043 lives in 2020. In most malignancies, p53 mutation rates are above 50% and provide prognostic indications. However, in melanoma where less than a quarter of cases harbour a p53 mutation, the significance of the tumour suppressor may be questioned. Instead, p53 isoforms, which modulate p53's canonical function, may be of greater clinical importance.Methods: The expression of p53 isoforms was evaluated in 123 melanoma specimens by immunohistochemistry using p53 isoform-specific antibodies (DO-1, KJC8, KJC40, and KJC133). To determine whether TP53 mutations may be driving p53 isoform expression, TP53 was sequenced in 30 FFPE melanoma samples.Results: The C-terminally truncated p53β isoforms (KJC8) were found to be the most highly expressed p53 isoforms compared to all other isoforms. Further, elevated KJC8 staining was found to correlate with reduced probability of melanoma-specific survival, while KJC40 staining (Δ40p53) positively correlated with reduced melanoma thickness. TAp53 isoforms (p53 retaining both transactivation domains, DO-1), were the second highest p53 isoforms expressed across all samples. Elevated DO-1 staining was also associated with worse survival outcomes and more advanced stages of cancer. Given that the isoforms are likely to work in concert, composite isoform profiles were generated. Composite biomarker profiles revealed that elevated TAp53 (DO-1) and p53β (KJC8) expression, accompanied by low Δ40p53 (KJC40) and Δ133p53 (KJC133) expression was associated with the worst survival outcomes. Supporting the lack of predictive biomarker potential of TP53 in melanoma, no clinicopathological or p53 isoform expression associations could be linked to TP53 status.Conclusions: Given the lack of prognostic biomarker potential derived from TP53 status, this study highlights how p53 isoform expression might progress this field and, pending further validation, may provide additional information to treating oncologists that might be factored into treatment decisions.</p

    Cytoplasmic p53β Isoforms Are Associated with Worse Disease-Free Survival in Breast Cancer

    Get PDF
    TP53 mutations are associated with tumour progression, resistance to therapy and poor prognosis. However, in breast cancer, TP53′s overall mutation frequency is lower than expected (~25%), suggesting that other mechanisms may be responsible for the disruption of this critical tumour suppressor. p53 isoforms are known to enhance or disrupt p53 pathway activity in cell- and context-specific manners. Our previous study revealed that p53 isoform mRNA expression correlates with clinicopathological features and survival in breast cancer and may account for the dysregulation of the p53 pathway in the absence of TP53 mutations. Hence, in this study, the protein expression of p53 isoforms, transactivation domain p53 (TAp53), p53β, Δ40p53, Δ133p53 and Δ160p53 was analysed using immunohistochemistry in a cohort of invasive ductal carcinomas (n = 108). p53 isoforms presented distinct cellular localisation, with some isoforms being expressed in tumour cells and others in infiltrating immune cells. Moreover, high levels of p53β, most likely to be N-terminally truncated β variants, were significantly associated with worse disease-free survival, especially in tumours with wild-type TP53. To the best of our knowledge, this is the first study that analysed the endogenous protein levels of p53 isoforms in a breast cancer cohort. Our findings suggest that p53β may be a useful prognostic marker

    Effect of p53 and its N-terminally truncated isoform, Δ40p53, on breast cancer migration and invasion

    Get PDF
    Breast cancer is the most diagnosed malignancy in women, with over half a million women dying from this disease each year. In our previous studies, ∆40p53, an N‐terminally truncated p53 isoform, was found to be upregulated in breast cancers, and a high ∆40p53 : p53α ratio was linked with worse disease‐free survival. Although p53α inhibits cancer migration and invasion, little is known about the role of ∆40p53 in regulating these metastasis‐related processes and its role in contributing to worse prognosis. The aim of this study was to assess the role of ∆40p53 in breast cancer migration and invasion. A relationship between Δ40p53 and gene expression profiles was identified in oestrogen‐receptor‐positive breast cancer specimens. To further evaluate the role of Δ40p53 in oestrogen‐receptor‐positive breast cancer, MCF‐7 and ZR75‐1 cell lines were transduced to knockdown p53α or Δ40p53 and overexpress Δ40p53. Proliferation, migration and invasion were assessed in the transduced sublines, and gene expression was assessed through RNA‐sequencing and validated by reverse‐transcription quantitative PCR. Knockdown of both p53α and ∆40p53 resulted in increased proliferation, whereas overexpression of ∆40p53 reduced proliferation rates. p53α knockdown was also associated with increased cell mobility. ∆40p53 overexpression reduced both migratory and invasive properties of the transduced cells. Phenotypic findings are supported by gene expression data, including differential expression of LRG1, HYOU1, UBE2QL1, SERPINA5 and PCDH7. Taken together, these results suggest that, at the basal level, ∆40p53 works similarly to p53α in suppressing cellular mobility and proliferation, although the role of Δ40p53 may be cell context‐specific

    Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage

    Get PDF
    Our previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer treatment was investigated in vitro. Our results revealed that a high Δ40p53:p53α ratio causes cells to respond differently to doxorubicin and cisplatin treatments. Δ40p53 overexpression significantly impairs the cells’ sensitivity to doxorubicin through reducing apoptosis and DNA damage, whereas Δ40p53 knockdown has the opposite effect. Further, a high Δ40p53:p53α ratio inhibited the differential expression of several genes following doxorubicin and promoted DNA repair, impairing the cells’ canonical response. Overall, our results suggest that the response of breast cancer cells to standard of care DNA-damaging therapies is dependent on the expression of p53 isoforms, which may contribute to outcomes in breast cancer

    P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the <it>P53 </it>tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of <it>P53 </it>in melanoma is uncommon; however, its function often appears abnormal.</p> <p>Methods</p> <p>In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts.</p> <p>Results</p> <p>The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant <it>P53 </it>compared to those with wild-type <it>P53</it>, suggesting that altered expression in melanoma was not related to <it>P53 </it>status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation.</p> <p>Conclusions</p> <p>These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly expressed in melanoma and that this aberrant functional activity of P53 may contribute to the proliferation of melanoma.</p

    Switching off Cancer: Is There a Role for Epigenetics?

    No full text
    Epigenetics is the study of heritable changes in gene expression that do not involve any change in DNA sequence and include methylation, histone modifications, and altered miRNA or lncRNA expression [...

    Genetic markers in breast cancer – how far fave we come from BRCA1?

    Get PDF
    Breast cancer is the most common malignancy that develops in women worldwide, its incidence continues to rise and it is responsible for the highest death rates. Breast cancer can be classified as sporadic or familial – the strongest risk factor today is a family history. Germline mutations in high-penetrance breast cancer susceptibility genes BRCA1 and BRCA2 have been strongly implicated in the genetic predisposition of approximately 20% of familial breast cancers. Although BRCA1 and BRCA2 do not account for all familial breast cancers, there are currently no other genes that have been identified which segregate with familial breast cancer as strongly. Despite large-scale attempts to identify genetic risk factors associated with breast cancer, the variants identified through genome-wide association studies (GWAS), only confer a modest increase in risk of breast cancer and at present lack clinical utility. This review will discuss the known genetic risk factors for developing breast cancer and how far the field has progressed since the identification of BRCA1

    Genome-wide miRNA, gene and methylation analysis of triple negative breast cancer to identify changes associated with lymph node metastases

    No full text
    Triple negative breast cancer (TNBC) is a particularly important breast cancer subtype with an aggressive clinical phenotype that is associated with a higher likelihood of metastasis. This subtype is characterized by an absence of the estrogen (ER) and progesterone (PR) receptors, as well as the human epidermal growth factor receptor 2 (HER2/HER neu). The absence of the three receptors significantly reduces targeted treatment options for patients with TNBC and as such, there is an urgent need to identify novel treatment targets. Here, we provide detailed information regarding the design of a multi-platform dataset that describes genome-wide assessment of miRNA (assessed by microarray, GSE38167) and gene expression (assessed by microarray, GSE61723), as well as methylation (assessed by Illumina HM450K BeadChip, GSE78751) in TNBCs, matched normal adjacent tissues and matched lymph node metastases. The use of this multi-platform dataset is likely to uncover novel markers and key pathways involved in progression to lymph node metastasis in TNBC

    MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer

    No full text
    Triple negative breast cancer (TNBC) is characterised by the lack of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2). Since it cannot be treated by current endocrine therapies which target these receptors and due to its aggressive nature, it has one of the worst prognoses of all breast cancer subtypes. The only treatments remain chemo- and/or radio-therapy and surgery and because of this, novel biomarkers or treatment targets are urgently required to improve disease outcomes. MicroRNAs represent an attractive candidate for targeted therapies against TNBC, due to their natural ability to act as antisense interactors and regulators of entire gene sets involved in malignancy and their superiority over mRNA profiling to accurately classify disease. Here we review the current knowledge regarding miRNAs as biomarkers in TNBC and their potential use as therapeutic targets in this disease. Further, we review other epigenetic changes and interactions of these changes with microRNAs in this breast cancer subtype, which may lead to the discovery of new treatment targets for TNBC

    p53 Dysregulation in Breast Cancer: Insights on Mutations in the <i>TP53</i> Network and p53 Isoform Expression

    No full text
    In breast cancer, p53 expression levels are better predictors of outcome and chemotherapy response than TP53 mutation. Several molecular mechanisms that modulate p53 levels and functions, including p53 isoform expression, have been described, and may contribute to deregulated p53 activities and worse cancer outcomes. In this study, TP53 and regulators of the p53 pathway were sequenced by targeted next-generation sequencing in a cohort of 137 invasive ductal carcinomas and associations between the identified sequence variants, and p53 and p53 isoform expression were explored. The results demonstrate significant variability in levels of p53 isoform expression and TP53 variant types among tumours. We have shown that TP53 truncating and missense mutations modulate p53 levels. Further, intronic mutations, particularly polymorphisms in intron 4, which can affect the translation from the internal TP53 promoter, were associated with increased Δ133p53 levels. Differential expression of p53 and p53 isoforms was associated with the enrichment of sequence variants in p53 interactors BRCA1, PALB2, and CHEK2. Taken together, these results underpin the complexity of p53 and p53 isoform regulation. Furthermore, given the growing evidence associating dysregulated levels of p53 isoforms with cancer progression, certain TP53 sequence variants that show strong links to p53 isoform expression may advance the field of prognostic biomarker study in breast cancer
    corecore