4,743 research outputs found

    Internet Gambling Law

    Get PDF

    BRITISH GAMING ACT OF 1968

    Get PDF

    Radiolucent esophageal foreign body presenting as a middle mediastinal mass and tracheoesophageal fistula

    Get PDF

    Native American Weight Loss Movement: Pilot Test of a Culturally Tailored Weight Loss Program for American Indians

    Full text link
    American Indians (AIs) have higher rates of obesity than other racial/ethnic groups, placing them at heightened risk for cardiovascular diseases, diabetes, and certain cancers. Culturally appropriate weight loss interventions may be the key to reducing risk. The most successful program used in AI communities has been the Diabetes Prevention Program (DPP), which limits enrollment to individuals with a clinical diagnosis of pre-diabetes. The purpose of this pilot project was to modify and culturally tailor a weight loss intervention to AI communities in Kansas to improve weight loss related behaviors among those who do not qualify for the DPP. The Native American Weight Loss Movement (NAWLM) was developed from 2012-2014 using an iterative process with 4 sequential modifications to the program. Group 1 received a slightly modified version of the DPP that was originally tailored to African Americans. Each group received an improved program based on modifications from the previous group. Our analysis shows 36.1% (95% CI: 25.7, 47.5) of all participants (n=72) lost weight; a majority (63.9%, 95% CI: 52.8-75.0) maintained weight, gained weight, or dropped out. Among individuals who completed the program (n=34), 76.5% lost weight (95% CI: 61.4, 91.5). These individuals lost an average of 2.98% body weight (95% CI: 1.58, 4.37), with 6 participants losing \u3e7% body weight. While most participants who completed the program lost weight, more research is needed to determine factors that discourage drop-out and promote behavioral changes. NAWLM shows promise as a weight loss program for AIs who do not qualify for the DPP

    Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    Full text link
    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light time travel effect, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes photon-weighted mode, enhanced limb darkening treatment, better reflection treatment and Doppler boosting. Here we present the concepts on which PHOEBE is built on and proofs of concept that demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release of PHOEBE 2.0 on http://phoebe-project.or
    • …
    corecore