1,724 research outputs found

    Pumping the Brakes on Robot Cars: Current Urban Traveler Willingness to Consider Driverless Vehicles

    Get PDF
    A growing literature suggests that widespread travel conducted through driverless connected and automated vehicles (CAVs) accessed as a service, in contrast to those personally owned, could have significant impacts on the sustainability of urban transportation. However, it is unclear how the general public currently considers willingness to travel in driverless vehicles, and if they would be more comfortable doing so in one personally owned or one accessed as a service. To address this, we collected travel survey data by intercepting respondents on discretionary or social trips to four popular destinations in a medium-size U.S. city in the spring of 2017. After collecting data on how the respondent reached the survey site and the trip’s origin and destination, survey administrators then asked if respondents would have been willing to make their current trip in either a personally-owned driverless vehicle or through a driverless vehicle service. Over one-third expressed willingness to use both forms, while 31% were unwilling to use either. For those that considered only one, slightly more favored the personally-owned model. Consideration of an existing mobility service was consistently a positive and significant predictor of those that expressed willingness to travel in a driverless vehicle, while traveling downtown negatively and significantly influenced consideration of at least one form of driverless vehicle. These findings highlight the diverse public views about the prospect of integration of CAVs in transportation systems and raise questions about the assumption that travelers to central city locations would be early adopters of automated vehicle mobility services.The research reported here was supported in part by the U.S. Environmental Protection Agency (EPA), SPEED Program Grant No. 83594901the University of Michigan Energy Institute (UMEI) and University of Michigan Dow Sustainability Fellows progra

    Reconstruction of recent sea-level change using testate amoebae

    Get PDF
    Reproduced with permission of the publisher. Copyright © 2009 University of Washington Published by Elsevier Inc.Proxy-based sea-level reconstructions place the instrumentally observed rates of recent sea-level rise in a longer term context by providing data that extend the instrumental sea-level record into past centuries. This paper presents the first sea-level reconstructions based on analyses of testate amoebae, to test their ability to produce high-precision reconstructions of past sea level. We present two reconstructions for the past 100 yr from sites in Maine (USA) and Nova Scotia (Canada) based on short cores from salt marshes, and modern training data from North America and the United Kingdom. These are compared with tide-gauge records and reconstructions based on foraminifera from the same cores. The reconstructions show good agreement with both the tide-gauge data and the foraminifera-based reconstructions. The UK data perform well in predicting known elevations of North American surface samples and produce sea-level reconstructions very similar to those based on the North American data, suggesting the methodology is robust across large geographical areas. We conclude that testate amoebae have the potential to provide robust, higher precision sea-level reconstructions for the past few centuries if modern transfer functions are improved and core sites are located within the main zone of testate amoebae occurrence on the salt marsh

    Preliminary Feeding Assessments for Asiatic Garden Beetle, Maladera formosae (Coleoptera: Scarabaeidae), Grubs and Adults

    Get PDF
    The Asiatic garden beetle, Maladera formosae (Brenske) (syn. M. castanea [Arrow]), is an annual white grub species that was unintentionally introduced from east Asia to North America in 1921 in New Jersey, and has since spread to at least 25 states and two Canadian provinces. Grub populations in the Great Lakes region have recently emerged as significant early-season pests of field crops, particularly field corn, grown in sandy soils. Asiatic garden beetle has also recently become established in other regions including Alabama. Prior research on this species was conducted mainly in the 1930s in horticultural and turfgrass systems of New York and New Jersey. In this study, we document Asiatic garden beetle preference and performance on previously un-investigated food resources, in populations from Ohio and Alabama. The objectives of these experiments were to a) understand if grubs show preference to potential diet choices present in a typical Ohio corn-soybean rotation, and gained mass when provided a single diet, and b) to conduct a preliminary assessment on the development, survival, and fecundity of field-collected beetles on different diets present in suburban Alabama. In general, grubs were more likely to be found at corn and marestail and they significantly increased in body mass when subjected to those diets. However, they were also able to survive and gain mass when provided soybean, crop residues or bare soil. Adults consumed more rose flower petals than floral tissue of white clover and Queen Anne’s lace. In no-choice trials, only females that were fed a diet of rose petals laid eggs, and diet consumption rates were similar among males and females. These findings provide insight into the feeding behaviors of Asiatic garden beetle grubs and adults collected from novel environments

    Perspectives on Continental Rifting Processes From Spatiotemporal Patterns of Faulting and Magmatism in the Rio Grande Rift, USA

    Full text link
    Analysis of spatiotemporal patterns of faulting and magmatism in the Rio Grande rift (RGR) in New Mexico and Colorado, USA, yields insights into continental rift processes, extension accommodation mechanisms, and rift evolution models. We combine new apatite (U‐Th‐Sm)/He and zircon (U‐Th)/He thermochronometric data with previously published thermochronometric data to assess the timing of fault initiation, magnitudes of fault exhumation, and growth and linkage patterns of rift faults. Thermal history modeling of these data reveals contemporaneous rift initiation at ca. 25 Ma in both the northern and southern RGR with continued fault initiation, growth, and linkage progressing from ca. 25 to ca. 15 Ma. The central RGR, however, shows no evidence of Cenozoic fault‐related exhumation as observed with thermochronometry and instead reveals extension accommodated through Late Cenozoic magmatic injection. Furthermore, faulting in the northern and southern RGR occurs along an approximately north‐south strike, whereas magmatism in the central RGR occurs along the northeast to southwest trending Jemez lineament. Differences in deformation orientation and rift accommodation along strike appear to be related to crustal and lithospheric properties, suggesting that rift structure and geometry are at least partly controlled by inherited lithospheric‐scale architecture. We propose an evolutionary model for the RGR that involves initiation of fault‐accommodated extension by oblique strain followed by block rotation of the Colorado Plateau, where extension in the RGR is accommodated by faulting (southern and northern RGR) and magmatism (central RGR). This study highlights different processes related to initiation, geometry, extension accommodation, and overall development of continental rifts.Plain Language SummaryWe identify patterns of faulting and volcanism in the Rio Grande rift (RGR) in the western United States to better understand how continental rifts evolve. Using methods for documenting rock cooling ages (thermochronology), we determined that rifting began around 25 million years ago (Ma) in both the northern and southern RGR. Rift faults continued to develop and grow for another 10 to 15 million years. The central RGR, however, shows that rift extension occurred through volcanic activity both as eruptions at the surface and as magma injection below the surface since ~15 Ma. Interestingly, RGR faulting in the north and south parts of the rift occurs on a north‐south line, while volcanism in the central RGR is along a northeast to southwest line. The differences in the location and orientation of faulting and volcanic activity may be related to the thickness of the lithosphere beneath different parts of the rift. Using these patterns of faulting and magmatism, we propose the RGR evolved through a combination of (1) oblique strain—extension diagonal to the rift and (2) block rotation—where the Colorado Plateau is the rotating block. This detailed study highlights different processes related to the accommodation of extension and the overall development of continental rifts.Key PointsInitiation of the Rio Grande rift appears to be synchronous ~25 Ma and does not support a northward propagation modelExtension is accommodated by faulting in the northern and southern Rio Grande rift and by magmatic injection in the central Rio Grande riftDifferent rift accommodation mechanisms may be controlled by preexisting weaknesses and lithospheric properties (i.e., thickness)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/1/tect21226.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/2/wrcr21226-sup-00001-2019TC005635-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152704/3/tect21226_am.pd

    Site-Specific Metal Chelation Facilitates the Unveiling of Hidden Coordination Sites in an Fe II/Fe III -Seamed Pyrogallol[4]arene Nanocapsule

    Get PDF
    Under suitable conditions, C-alkylpyrogallol­[4]­arenes (PgCs) arrange into spherical metal–organic nanocapsules (MONCs) upon coordination to appropriate metal ions. Herein we present the synthesis and structural characterization of a novel FeII/FeIII-seamed MONC, as well as studies related to its electrochemical and magnetic behaviors. Unlike other MONCs that are assembled through 24 metal ions, this nanocapsule comprises 32 Fe ions, uncovering 8 additional coordination sites situated between the constituent PgC subunits. The FeII ions are likely formed by the reducing ability of DMF used in the synthesis, representing a novel synthetic route toward polynuclear mixed-valence MONCs

    A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem

    Get PDF
    <div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M⊙(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
    • 

    corecore