14 research outputs found

    S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease

    Get PDF
    BACKGROUND: The lysosphingolipid sphingosine 1-phosphate (S1P) is carried in the blood in association with lipoproteins, predominantly high density lipoproteins (HDL). Emerging evidence suggests that many of the effects of HDL on cardiovascular function may be attributable to its S1P cargo. METHODS: Here we have evaluated how levels of S1P and related sphingolipids in an HDL-containing fraction of human serum correlate with occurrence of ischemic heart disease (IHD). To accomplish this we used liquid chromatography-mass spectrometry to measure S1P levels in the HDL-containing fraction of serum (depleted of LDL and VLDL) from 204 subjects in the Copenhagen City Heart Study (CCHS). The study group consisted of individuals having high serum HDL cholesterol (HDL-C) (females:≥73.5 mg/dL; males:≥61.9 mg/dL) and verified IHD; subjects with high HDL-C and no IHD; individuals with low HDL-C (females:≤38.7 mg/dL; males:≤34.1 mg/dL) and IHD, and subjects with low HDL-C and no IHD. RESULTS: The results show a highly significant inverse relationship between the level of S1P in the HDL-containing fraction of serum and the occurrence of IHD. Furthermore, an inverse relationship with IHD was also observed for two other sphingolipids, dihydro-S1P and C24:1-ceramide, in the HDL-containing fraction of serum. Additionally, we demonstrated that the amount of S1P on HDL correlates with the magnitude of HDL-induced endothelial cell barrier signaling. CONCLUSIONS: These findings indicate that compositional differences of sphingolipids in the HDL-containing fraction of human serum are related to the occurrence of IHD, and may contribute to the putative protective role of HDL in IHD

    Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC.</p> <p>Methods</p> <p>Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589.</p> <p>Results</p> <p>The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays.</p> <p>Conclusions</p> <p>We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.</p

    Sphingosine-1-phosphate signaling in vasculogenesis and angiogenesis

    No full text
    Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses
    corecore