676 research outputs found
Pairing symmetry and long range pair potential in a weak coupling theory of superconductivity
We study the superconducting phase with two component order parameter
scenario, such as, , where . We show, that in absence of orthorhombocity, the usual
does not mix with usual symmetry gap in an anisotropic band
structure. But the symmetry does mix with the usual d-wave for . The d-wave symmetry with higher harmonics present in it also mixes with
higher order extended wave symmetry. The required pair potential to obtain
higher anisotropic and extended s-wave symmetries, is derived by
considering longer ranged two-body attractive potential in the spirit of tight
binding lattice. We demonstrate that the dominant pairing symmetry changes
drastically from to like as the attractive pair potential is obtained
from longer ranged interaction. More specifically, a typical length scale of
interaction , which could be even/odd multiples of lattice spacing leads
to predominant wave symmetry. The role of long range interaction on
pairing symmetry has further been emphasized by studying the typical interplay
in the temperature dependencies of these higher order and wave pairing
symmetries.Comment: Revtex 8 pages, 7 figures embeded in the text, To appear in PR
The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to
measure the gravity-wave signature of primordial inflation through its
distinctive imprint on the linear polarization of the cosmic microwave
background. The instrument consists of a polarizing Michelson interferometer
configured as a nulling polarimeter to measure the difference spectrum between
orthogonal linear polarizations from two co-aligned beams. Either input can
view the sky or a temperature-controlled absolute reference blackbody
calibrator. PIXIE will map the absolute intensity and linear polarization
(Stokes I, Q, and U parameters) over the full sky in 400 spectral channels
spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um
wavelength). Multi-moded optics provide background-limited sensitivity using
only 4 detectors, while the highly symmetric design and multiple signal
modulations provide robust rejection of potential systematic errors. The
principal science goal is the detection and characterization of linear
polarization from an inflationary epoch in the early universe, with
tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE
data set will also constrain physical processes ranging from Big Bang cosmology
to the nature of the first stars to physical conditions within the interstellar
medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology
and Astroparticle Physic
Identity and integration of Russian speakers in the Baltic states: a framework for analysis
Following a review of current scholarship on identity and integration patterns of Russian speakers in the Baltic states, this article proposes an analytical framework to help understand current trends. Rogers Brubaker's widely employed triadic nexus is expanded to demonstrate why a form of Russian-speaking identity has been emerging, but has failed to become fully consolidated, and why significant integration has occurred structurally but not identificationally. By enumerating the subfields of political, economic, and cultural ‘stances’ and ‘representations’ the model helps to understand the complicated integration processes of minority groups that possess complex relationships with ‘external homelands’, ‘nationalizing states’ and ‘international organizations’. Ultimately, it is argued that socio-economic factors largely reduce the capacity for a consolidated identity; political factors have a moderate tendency to reduce this capacity, whereas cultural factors generally increase the potential for a consolidated group identity
Ultrasound attenuation in gap-anisotropic systems
Transverse ultrasound attenuation provides a weakly-coupled probe of momentum
current correlations in electronic systems. We develop a simple theory for the
interpretation of transverse ultrasound attenuation coefficients in systems
with nodal gap anisotropy. Applying this theory we show how ultrasound can
delineate between extended-s and d-wave scenarios for the cuprate
superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde
Cognitive Social Psychology
Social psychology is presently dominated by cognitive theories that emphasize the importance of personal beliefs and in tellective processes as the immediate determinants of behavior. The present paper explores two areas of.research within this tra dition : (1) beliefs about the external world, and (2) beliefs about the self. The paper concludes with a brief critique of the cognitive approach to social psychology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69030/2/10.1177_014616727700300402.pd
A shooting algorithm for problems with singular arcs
In this article we propose a shooting algorithm for a class of optimal
control problems for which all control variables appear linearly. The shooting
system has, in the general case, more equations than unknowns and the
Gauss-Newton method is used to compute a zero of the shooting function. This
shooting algorithm is locally quadratically convergent if the derivative of the
shooting function is one-to-one at the solution. The main result of this paper
is to show that the latter holds whenever a sufficient condition for weak
optimality is satisfied. We note that this condition is very close to a second
order necessary condition. For the case when the shooting system can be reduced
to one having the same number of unknowns and equations (square system) we
prove that the mentioned sufficient condition guarantees the stability of the
optimal solution under small perturbations and the invertibility of the
Jacobian matrix of the shooting function associated to the perturbed problem.
We present numerical tests that validate our method.Comment: No. RR-7763 (2011); Journal of Optimization, Theory and Applications,
published as 'Online first', January 201
Signatures of Baryon non-conserving Yukawa couplings in a supersymmetric theory
Renormalization effects of large baryon-nonconserving Yukawa couplings
lower the right handed squark masses keeping the left-handed squark masses
virtually untouched at the lowest order. At low energy they enhance the
mass-splitting between left and right handed squarks of the same generation as
well as intergenerational mass splitting among squarks, potentially detectable
in future colliders or in rare decays. The predicted mass of the lightest stop
squark becomes lower than the experimental bound for larger ranges of parameter
space than that of the Baryon-conserving case, hence, further constraining the
parameter space of a supersymmetric theory when baryon violation is included.Comment: 16 pages, six figures, captions.sty include
Oracle-based optimization applied to climate model calibration
In this paper, we show how oracle-based optimization can be effectively used for the calibration of an intermediate complexity climate model. In a fully developed example, we estimate the 12 principal parameters of the C-GOLDSTEIN climate model by using an oracle- based optimization tool, Proximal-ACCPM. The oracle is a procedure that finds, for each query point, a value for the goodness-of-fit function and an evaluation of its gradient. The difficulty in the model calibration problem stems from the need to undertake costly calculations for each simulation and also from the fact that the error function used to assess the goodness-of-fit is not convex. The method converges to a Fbest fit_ estimate over 10 times faster than a comparable test using the ensemble Kalman filter. The approach is simple to implement and potentially useful in calibrating computationally demanding models based on temporal integration (simulation), for which functional derivative information is not readily available
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
- …