2,556 research outputs found

    On the sum of the L1 influences of bounded functions

    Full text link
    Let f ⁣:{βˆ’1,1}nβ†’[βˆ’1,1]f\colon \{-1,1\}^n \to [-1,1] have degree dd as a multilinear polynomial. It is well-known that the total influence of ff is at most dd. Aaronson and Ambainis asked whether the total L1L_1 influence of ff can also be bounded as a function of dd. Ba\v{c}kurs and Bavarian answered this question in the affirmative, providing a bound of O(d3)O(d^3) for general functions and O(d2)O(d^2) for homogeneous functions. We improve on their results by providing a bound of d2d^2 for general functions and O(dlog⁑d)O(d\log d) for homogeneous functions. In addition, we prove a bound of d/(2Ο€)+o(d)d/(2 \pi)+o(d) for monotone functions, and provide a matching example.Comment: 16 pages; accepted for publication in the Israel Journal of Mathematic

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Visualization of nano-plasmons in graphene

    Full text link
    We study localized plasmons at the nanoscale (nano-plasmons) in graphene. The collective excitations of induced charge density modulations in graphene are drastically changed in the vicinity of a single impurity compared to graphene's bulk behavior. The dispersion of nano-plasmons depends on the number of electrons and the sign, strength and size of the impurity potential. Due to this rich parameter space the calculated dispersions are intrinsically multidimensional requiring an advanced visualization tool for their efficient analysis, which can be achieved with parallel rendering. To overcome the problem of analyzing thousands of very complex spatial patterns of nano-plasmonic modes, we take a combined visual and quantitative approach to investigate the excitations on the two-dimensional graphene lattice. Our visual and quantitative analysis shows that impurities trigger the formation of localized plasmonic excitations of various symmetries. We visually identify dipolar, quadrupolar and radial modes, and quantify the spatial distributions of induced charges.Comment: 14 pages, 9 figure

    Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths

    Get PDF
    Background: Acceleration of chronic diseases, particularly cardiovascular disease, may increase long-term mortality after community-acquired pneumonia (CAP), but underlying mechanisms are unknown. Persistence of the prothrombotic state that occurs during an acute infection may increase risk of subsequent atherothrombosis in patients with pre-existing cardiovascular disease and increase subsequent risk of death. We hypothesized that circulating hemostasis markers activated during CAP persist at hospital discharge, when patients appear to have recovered clinically, and are associated with higher mortality, particularly due to cardiovascular causes. Methods: In a cohort of survivors of CAP hospitalization from 28 US sites, we measured D-Dimer, thrombin-antithrombin complexes [TAT], Factor IX, antithrombin, and plasminogen activator inhibitor-1 at hospital discharge, and determined 1-year all-cause and cardiovascular mortality. Results: Of 893 subjects, most did not have severe pneumonia (70.6% never developed severe sepsis) and only 13.4% required intensive care unit admission. At discharge, 88.4% of subjects had normal vital signs and appeared to have clinically recovered. D-dimer and TAT levels were elevated at discharge in 78.8% and 30.1% of all subjects, and in 51.3% and 25.3% of those without severe sepsis. Higher D-dimer and TAT levels were associated with higher risk of all-cause mortality (range of hazard ratios were 1.66-1.17, p = 0.0001 and 1.46-1.04, p = 0.001 after adjusting for demographics and comorbid illnesses) and cardiovascular mortality (p = 0.009 and 0.003 in competing risk analyses). Conclusions: Elevations of TAT and D-dimer levels are common at hospital discharge in patients who appeared to have recovered clinically from pneumonia and are associated with higher risk of subsequent deaths, particularly due to cardiovascular disease. Β© 2011 Yende et al

    Hybrid Model for the Analysis of Human Gait: A Non-linear Approach

    Get PDF
    In this work, a generalization of the study of the human gait was made from already existent models in the literature, like models of Keller and Kockshenev. In this hybrid model, a strategy of metabolic energy minimization is combined in a race process, with a non-linear description of the movement of the mass center’s libration, trying to reproduce the behavior of the walk-run transition. The results of the experimental data, for different speed regimes, indicate that the perimeter of the trajectory of the mass center is a relevant quantity in the quantification of this dynamic. An experimental procedure was put into practice in collaboration with the research group in Biomedical Engineering, Basic Sciences and Laboratories of the Manuela BeltrΓ‘n University in BogotΓ‘, Colombia

    Sonosensitive cavitation nuclei-a customisable platform technology for enhanced therapeutic delivery

    Get PDF
    Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field

    Functor of continuation in Hilbert cube and Hilbert space

    Get PDF
    A ZZ-set in a metric space XX is a closed subset KK of XX such that each map of the Hilbert cube QQ into XX can uniformly be approximated by maps of QQ into Xβˆ–KX \setminus K. The aim of the paper is to show that there exists a functor of extension of maps between ZZ-sets of QQ [or l2l_2] to maps acting on the whole space QQ [resp. l2l_2]. Special properties of the functor are proved.Comment: 9 page

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the ΞΌMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous ΞΌMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. Β© 2013 Kozakiewicz et al

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page
    • …
    corecore