940 research outputs found
Preserving the Ocean Circulation: Implications for Climate Policy
Climate modelers have recognized the possibility of abrupt climate changes caused by a reorganization of the North Atlantic's current pattern (technically known as a thermohaline circulation collapse). This circulation system now warms north-western Europe and transports carbon dioxide to the deep oceans. The posited collapse of this system could produce severe cooling in north-western Europe, even when general global warming is in progress. In this paper we use a simple integrated assessment model to investigate the optimal policy response to this risk. Adding the constraint of avoiding a thermohaline circulation collapse would significantly reduce the allowable greenhouse gas emissions in the long run along an optimal path. Our analysis implies that relatively small damages associated with a collapse (less than 1 % of gross world product) would justify a considerable reduction of future carbon dioxide emissions.
Complex Systems Science: Dreams of Universality, Reality of Interdisciplinarity
Using a large database (~ 215 000 records) of relevant articles, we
empirically study the "complex systems" field and its claims to find universal
principles applying to systems in general. The study of references shared by
the papers allows us to obtain a global point of view on the structure of this
highly interdisciplinary field. We show that its overall coherence does not
arise from a universal theory but instead from computational techniques and
fruitful adaptations of the idea of self-organization to specific systems. We
also find that communication between different disciplines goes through
specific "trading zones", ie sub-communities that create an interface around
specific tools (a DNA microchip) or concepts (a network).Comment: Journal of the American Society for Information Science and
Technology (2012) 10.1002/asi.2264
Sub-6-fs blue pulses generated by quasi-phase-matching second-harmonic generation pulse compression
Abstract. : We demonstrate a novel scalable and engineerable approach for the frequency-doubling of ultrashort pulses. Our technique is based on quasi-phase-matching and simultaneously provides tailored dispersion and nonlinear frequency conversion of few-cycle optical pulses. The method makes use of the spatial localization of the conversion process and the group velocity mismatch in a chirped grating structure. The total group delay of the nonlinear device can be designed to generate nearly arbitrarily chirped second-harmonic pulses from positively or negatively chirped input pulses. In particular, compressed second-harmonic pulses can be obtained. A brief summary of the underlying theory is presented, followed by a detailed discussion of our experimental results. We experimentally demonstrate quasi-phase-matching pulse compression in the sub-10-fs regime by generating few-cycle pulses in the blue to near-ultraviolet spectral range. Using this new frequency conversion technique, we generate sub-6-fs pulses centered at 405nm by second-harmonic generation from a 8.6fs Ti:sapphire laser pulse. The generated spectrum spans a bandwidth of 220THz. To our knowledge, these are the shortest pulses ever obtained by second-harmonic generatio
Dialogue as Moral Paradigm: Paths Toward Intercultural Transformation
The Council of Europe’s 2008 White Paper on Intercultural Dialogue: ‘living
together as equals in dignity’ points to the need for shared values upon which intercultural dialogue might rest. In order, however, to overcome the monologic separateness that threatens community, we must educate ourselves to recognize the dialogism of our humanity and to engage in deep encounters with others with a mature skepticism of all dogmatisms, including our own. In order to aid us in reaching the necessary insight, the author calls upon Bakhtin’s ideas of the dialogism of every utterance and of the unity and heteroglossia of language, Gadamer’s hermeneutical experience that shakes us loose from what we think we know, and Levinas’s description of that transcendent ideal of a dialogue beyond reciprocity. These perspectives break open our certainty that tribalism and individualism are fundamental, placing them instead as secondary phenomena that, though
powerful, pronounce neither the initial nor the final word on our life together
Collective dynamics of colloids at fluid interfaces
The evolution of an initially prepared distribution of micron sized colloidal
particles, trapped at a fluid interface and under the action of their mutual
capillary attraction, is analyzed by using Brownian dynamics simulations. At a
separation \lambda\ given by the capillary length of typically 1 mm, the
distance dependence of this attraction exhibits a crossover from a logarithmic
decay, formally analogous to two-dimensional gravity, to an exponential decay.
We discuss in detail the adaption of a particle-mesh algorithm, as used in
cosmological simulations to study structure formation due to gravitational
collapse, to the present colloidal problem. These simulations confirm the
predictions, as far as available, of a mean-field theory developed previously
for this problem. The evolution is monitored by quantitative characteristics
which are particularly sensitive to the formation of highly inhomogeneous
structures. Upon increasing \lambda\ the dynamics show a smooth transition from
the spinodal decomposition expected for a simple fluid with short-ranged
attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for
publication in the European Physical Journal
Can we avoid high coupling?
It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable
Inpatient Transition to Virtual Care During COVID-19 Pandemic
Introduction: During the coronavirus disease 2019 (COVID-19) outbreak, novel approaches to diabetes care have been employed. Care in both the inpatient and outpatient setting has transformed considerably. Driven by the need to reduce the use of personal protective equipment and exposure for patients and providers alike, we transitioned inpatient diabetes management services to largely "virtual" or remotely provided care at our hospital. Methods: Implementation of a diabetes co-management service under the direction of the University of North Carolina division of endocrinology was initiated in July 2019. In response to the COVID-19 pandemic, the diabetes service was largely transitioned to a virtual care model in March 2020. Automatic consults for COVID-19 patients were implemented. Glycemic outcomes from before and after transition to virtual care were evaluated. Results: Data over a 15-week period suggest that using virtual care for diabetes management in the hospital is feasible and can provide similar outcomes to traditional face-to-face care. Conclusion: Automatic consults for COVID-19 patients ensure that patients with serious illness receive specialized diabetes care. Transitioning to virtual care models does not limit the glycemic outcomes of inpatient diabetes care and should be employed to reduce patient and provider exposure in the setting of COVID-19. These findings may have implications for reducing nosocomial infection in less challenging times and might address shortage of health care providers, especially in the remote areas
Distribution of resonances for open quantum maps
We analyze simple models of classical chaotic open systems and of their
quantizations (open quantum maps on the torus). Our models are similar to
models recently studied in atomic and mesoscopic physics. They provide a
numerical confirmation of the fractal Weyl law for the density of quantum
resonances of such systems. The exponent in that law is related to the
dimension of the classical repeller (or trapped set) of the system. In a
simplified model, a rigorous argument gives the full resonance spectrum, which
satisfies the fractal Weyl law. For this model, we can also compute a quantity
characterizing the fluctuations of conductance through the system, namely the
shot noise power: the value we obtain is close to the prediction of random
matrix theory.Comment: 60 pages, no figures (numerical results are shown in other
references
Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)
X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy
have been used to study the well-known order-disorder transition (ODT) to the
beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through
combination of time-dependent and temperature-dependent measurements. The ODT
is well described by a simple Avrami picture of one-dimensional nucleation and
growth but crystallization, on cooling, proceeds only after molecular-level
conformational relaxation to the so called beta phase. Rapid thermal quenching
is employed for PF8 studies of pure alpha phase samples while extended
low-temperature annealing is used for improved beta phase formation. Low
temperature PL studies reveal sharp Franck-Condon type emission bands and, in
the beta phase, two distinguishable vibronic sub-bands with energies of
approximately 199 and 158 meV at 25 K. This improved molecular level structural
order leads to a more complete analysis of the higher-order vibronic bands. A
net Huang-Rhys coupling parameter of just under 0.7 is typically observed but
the relative contributions by the two distinguishable vibronic sub-bands
exhibit an anomalous temperature dependence. The PL studies also identify
strongly correlated behavior between the relative beta phase 0-0 PL peak
position and peak width. This relationship is modeled under the assumption that
emission represents excitons in thermodynamic equilibrium from states at the
bottom of a quasi-one-dimensional exciton band. The crystalline phase, as
observed in annealed thin-film samples, has scattering peaks which are
incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure
Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model
Abstract
Background
Lupin proteins exert hypocholesterolemic effects in man and animals, although the
underlying mechanism remains uncertain. Herein we investigated whether lupin proteins
compared to casein modulate sterol excretion and mRNA expression of intestinal sterol
transporters by use of pigs as an animal model with similar lipid metabolism as humans, and
cellular cholesterol-uptake by Caco-2 cells.
Methods
Two groups of pigs were fed cholesterol-containing diets with either 230 g/kg of lupin
protein isolate from L. angustifolius or 230 g/kg casein, for 4 weeks. Faeces were collected
quantitatively over a 5 d period for analysis of neutral sterols and bile acids by gas
chromatographically methods. The mRNA abundances of intestinal lipid transporters were
analysed by real-time RT-PCR. Cholesterol-uptake studies were performed with Caco-2 cells
that were incubated with lupin conglutin \u3b3, phytate, ezetimibe or albumin in the presence of
labelled [4-14C]-cholesterol.
Results
Pigs fed the lupin protein isolate revealed lower cholesterol concentrations in total plasma,
LDL and HDL than pigs fed casein (P < 0.05). Analysis of faeces revealed a higher output of
cholesterol in pigs that were fed lupin protein isolate compared to pigs that received casein
(+57.1%; P < 0.05). Relative mRNA concentrations of intestinal sterol transporters involved
in cholesterol absorption (Niemann-Pick C1-like 1, scavenger receptor class B, type 1) were
lower in pigs fed lupin protein isolate than in those who received casein (P < 0.05). In vitro
data showed that phytate was capable of reducing the uptake of labelled [4-14C]-cholesterol
into the Caco-2 cells to the same extend as ezetimibe when compared to control ( 1220.5% vs.
1221.1%; P < 0.05).
Conclusions
Data reveal that the cholesterol-lowering effect of lupin protein isolate is attributable to an
increased faecal output of cholesterol and a reduced intestinal uptake of cholesterol. The
findings indicate phytate as a possible biofunctional ingredient of lupin protein isolate.Background: Lupin proteins exert hypocholesterolemic effects in man and animals, although the underlying mechanism remains uncertain. Herein we investigated whether lupin proteins compared to casein modulate sterol excretion and mRNA expression of intestinal sterol transporters by use of pigs as an animal model with similar lipid metabolism as humans, and cellular cholesterol-uptake by Caco-2 cells. Methods. Two groups of pigs were fed cholesterol-containing diets with either 230 g/kg of lupin protein isolate from L. angustifolius or 230 g/kg casein, for 4 weeks. Faeces were collected quantitatively over a 5 d period for analysis of neutral sterols and bile acids by gas chromatographically methods. The mRNA abundances of intestinal lipid transporters were analysed by real-time RT-PCR. Cholesterol-uptake studies were performed with Caco-2 cells that were incubated with lupin conglutin \u3b3, phytate, ezetimibe or albumin in the presence of labelled [4- 14C]-cholesterol. Results: Pigs fed the lupin protein isolate revealed lower cholesterol concentrations in total plasma, LDL and HDL than pigs fed casein (P < 0.05). Analysis of faeces revealed a higher output of cholesterol in pigs that were fed lupin protein isolate compared to pigs that received casein (+57.1%; P < 0.05). Relative mRNA concentrations of intestinal sterol transporters involved in cholesterol absorption (Niemann-Pick C1-like 1, scavenger receptor class B, type 1) were lower in pigs fed lupin protein isolate than in those who received casein (P < 0.05). In vitro data showed that phytate was capable of reducing the uptake of labelled [4- 14C]-cholesterol into the Caco-2 cells to the same extend as ezetimibe when compared to control (-20.5% vs. -21.1%; P < 0.05). Conclusions: Data reveal that the cholesterol-lowering effect of lupin protein isolate is attributable to an increased faecal output of cholesterol and a reduced intestinal uptake of cholesterol. The findings indicate phytate as a possible biofunctional ingredient of lupin protein isolate
- …