1,618 research outputs found

    Accurate Cylindrical-Coordinate Numerical Models For The Analysis Of Hydrologic Tests

    Get PDF
    Analytical solutions to well hydraulic problems have restrictive assumptions that often do not match real world conditions. Although numerical models more closely match reality, they either ran too slowly to be practical or lacked accuracy because of coarse grid spacing and large time steps. Advances in computer power over the last few decades now allow for accurate, fast numerical models that handle complex flow systems. The purpose of this dissertation was to develop flexible and accurate numerical modeling codes for the simulation of hydrologic tests. One of these numerical modeling codes, the Slug Test Simulator (STS), was designed for the mechanics of a single well test, or slug test. STS can handle a variety of conditions including unconfined flow, partial penetration, layered heterogeneities, and the presence of a homogeneous well skin like existing codes. This program also extends on the capabilities of earlier codes with its ability to simulate a heterogeneous skin where K can vary in both the radial and vertical directions. STS has a clear user interface, can display graphical results, and allows the user to determine hydraulic conductivity through a trial-and-error curve-matching process. Comparisons of STS to the Cooper-Bredehoeft-Papadopulos analytical solution and the Kansas Geological Survey (KGS) semi-analytical solution produced near-identical curves under a wide variety of conditions. Numerous analytical studies have shown that the well skin is an important factor in the underestimation of hydraulic conductivity in slug tests. STS allows for the exploration of the well skin issue under conditions too complex for analytical models. Model trials revealed two key discoveries: 1) if any layers within the skin have the same hydraulic conductivity as the surrounding formation, flow is concentrated within these conduits and the resultant head response approaches the case when no skin is present; and 2) the two most important properties in determining the overall influence of the skin are specific storage and skin thickness. The first discovery suggests that extensive development activities can essentially eliminate any well skin impacts. Other factors such as partial penetration, the placement of the well screen, and anisotropy play insignificant roles in resultant head responses. Recent research is focusing on alternative direct- push (DP) methodologies to determine hydrologic properties. DP offers advantages over traditional well tests, but may yield inaccurate results if the screen becomes clogged during pushing activities. The Kansas Geological Survey (KGS) developed a new DP technique, the Direct-Push Permeameter (DPP), to overcome this limitation. Existing analytical or numerical models cannot address the specialized nature of DPP tests so a second numerical modeling code, the Direct Push Permeameter Simulator (DPSS), was developed. DPPS was generated by modifying STS so both numerical codes are similar in many ways, particularly with their flexibility and accuracy. The codes differ in how they handle vertical layering, the boundary conditions at the well, and the spreadsheet interfaces. DPPS was able to produce near-identical curves in comparison to the Theis analytical solution. DPPS was also able to reasonably recreate DPP field data conducted at two sites with distinctly different media properties. The GEMS and Nauen sites had an average error of 14.2% and 3.1%, respectively between the field data and DPPS simulations

    Educational testing of an auditory display regarding seasonal variation of martian polar ice caps

    Get PDF
    Proceedings of the 9th International Conference on Auditory Display (ICAD), Boston, MA, July 7-9, 2003.During Fall 2002, planetary scientists and astronomy education researchers from the University of Arizona and the National Optical Astronomy Observatory collaborated with composer Marty Quinn of Design Rhythmics Sonification Research Lab in New Hampshire to create both a visual and auditory display of recent gamma ray data from Mars. This product will be used both to highlight the value of data from the current Mars 2001 Odyssey mission and to serve as a testbed for research into the use and effectiveness of auditory displays in science education. This paper provides background on the Mars data presented, an overview of the animation/sonification product, preliminary results from educational testing of the product, and future research plans. The authors hope to present both the sonification and preliminary results of educational research at the ICAD conference this summer

    A Multizone Technique for Billet Inspection

    Get PDF
    An ultrasonic inspection system has been developed in response to FAA recommendations for improved inspection of titanium billet [1]. This prototype system — called Multizone — has been transitioned to the factory floor and has inspected 1,000,000+ pounds of Ti billet in 1993–94. It is a real-time, PC based platform that employs custom built analog electronics using up to 8 parallel (non-multiplexed) channels, each with a remote pulser/receiver matched to the ultrasonic transducer. Scanned helically, the billet is divided into concentric zones with a focused transducer used to acquire peak detected C-Scan image data for each zone. The depth of each zone is established by the depth of focus of that transducer. C-Scan image data from all channels are displayed simultaneously on a 1024×1280 CRT and scroll as the inspection advances along the billet length. The data are written to optical storage upon completion of the inspection. The analog electronics are fully synchronous and could provide a baseline system for the acquisition of full waveforms. Custom post scan analysis software has been developed to detect flaws using signal to noise based algorithms. This software provides more reproducible results than conventional systems and greatly reduces operator fatigue and the chance for error. This paper will discuss the system architecture and operation. A companion paper in this volume discusses inspection results. [2

    Rhetorical Transformations in Multimodal Advertising Texts: From General to Local Degree Zero

    Get PDF
    The use of rhetoric in advertising research has been steadily gaining momentum since the 1980’s. Coupled with an increased interest in multimodality and the multiple interactions among verbal, pictorial and auditory registers, as structural components of an ad filmic text, the hermeneutic tools furnished by traditional rhetoric have been expanded and elaborated. This paper addresses the fundamental question of how ad filmic texts assume signification from a multimodal rhetorical point of view, by engaging in a fruitful dialogue with various research streams within the wider semiotic discipline and consumer research. By critically addressing the context of analysis of a multimodal ad text in the course of the argumentation deployed by different approaches, such as Social Semiotics (Kress/Leeuwen 2001), Film Semiotics (i.e. Metz 1982, Carroll 1980, Branigan 1982), Visual Semiotics (i.e. Sonesson 2008; 2010, Eco 1972;1976;1986, Groupe " 1992), Consumer Research (i.e. Mick/McQuarrie 1999; 2004, Philips 2003, Scott 1994), the relative merits of a structuralist approach that prioritizes the distinction between local and general degree zero, as put forward by Groupe " (1992), are highlighted. Furthermore, the modes whereby rhetorical transformations are enacted are outlined, with view to deepening the conceptual tackling of degree zero of signification, while addressing its applicability to branding discourse and multimodal ad texts

    The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results

    Get PDF
    Mass spectrometry (MS) based label-free protein quantitation has mainly focused on analysis of ion peak heights and peptide spectral counts. Most analyses of tandem mass spectrometry (MS/MS) data begin with an enzymatic digestion of a complex protein mixture to generate smaller peptides that can be separated and identified by an MS/MS instrument. Peptide spectral counting techniques attempt to quantify protein abundance by counting the number of detected tryptic peptides and their corresponding MS spectra. However, spectral counting is confounded by the fact that peptide physicochemical properties severely affect MS detection resulting in each peptide having a different detection probability. Lu et al. (2007) described a modified spectral counting technique, Absolute Protein Expression (APEX), which improves on basic spectral counting methods by including a correction factor for each protein (called O(i) value) that accounts for variable peptide detection by MS techniques. The technique uses machine learning classification to derive peptide detection probabilities that are used to predict the number of tryptic peptides expected to be detected for one molecule of a particular protein (O(i)). This predicted spectral count is compared to the protein's observed MS total spectral count during APEX computation of protein abundances. Results: The APEX Quantitative Proteomics Tool, introduced here, is a free open source Java application that supports the APEX protein quantitation technique. The APEX tool uses data from standard tandem mass spectrometry proteomics experiments and provides computational support for APEX protein abundance quantitation through a set of graphical user interfaces that partition thparameter controls for the various processing tasks. The tool also provides a Z-score analysis for identification of significant differential protein expression, a utility to assess APEX classifier performance via cross validation, and a utility to merge multiple APEX results into a standardized format in preparation for further statistical analysis. Conclusion: The APEX Quantitative Proteomics Tool provides a simple means to quickly derive hundreds to thousands of protein abundance values from standard liquid chromatography-tandem mass spectrometry proteomics datasets. The APEX tool provides a straightforward intuitive interface design overlaying a highly customizable computational workflow to produce protein abundance values from LC-MS/MS datasets.National Institute of Allergy and Infectious Diseases (NIAID) N01-AI15447National Institutes of HealthNational Science Foundation, the Welsh and Packard FoundationsInternational Human Frontier Science ProgramCenter for Systems and Synthetic Biolog

    The Early Royal Society and Visual Culture

    Get PDF
    Recent studies have fruitfully examined the intersection between early modern science and visual culture by elucidating the functions of images in shaping and disseminating scientific knowledge. Given its rich archival sources, it is possible to extend this line of research in the case of the Royal Society to an examination of attitudes towards images as artefacts –manufactured objects worth commissioning, collecting and studying. Drawing on existing scholarship and material from the Royal Society Archives, I discuss Fellows’ interests in prints, drawings, varnishes, colorants, images made out of unusual materials, and methods of identifying the painter from a painting. Knowledge of production processes of images was important to members of the Royal Society, not only as connoisseurs and collectors, but also as those interested in a Baconian mastery of material processes, including a “history of trades”. Their antiquarian interests led to discussion of painters’ styles, and they gradually developed a visual memorial to an institution through portraits and other visual records.AH/M001938/1 (AHRC

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Capabilities, Performance, and Status of the SOFIA Science Instrument Suite

    Get PDF
    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 540 m imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60240 m, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.31.1 m imager, developed at Lowell Observatory. FLITECAM is a 15 m wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42210 m integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 528 m high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50240 m imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011
    • …
    corecore