13 research outputs found

    An Efficient Trajectory Negotiation and Verification Method Based on Spatiotemporal Pattern Mining

    No full text
    In trajectory-based operations, trajectory negotiation and verification are conducive to using airspace resources fairly, reducing flight delay, and ensuring flight safety. However, most of the current methods are based on route negotiation, making it difficult to accommodate airspace user-initiated trajectory requests and dynamic flight environments. Therefore, this paper develops a framework for trajectory negotiation and verification and describes the trajectory prediction, negotiation, and verification processes based on a four-dimensional trajectory. Secondly, users predict flight trajectories based on aircraft performance and flight plans and submit them as requested flight trajectories to the air traffic management (ATM) system for negotiation in the airspace. Then, a spatiotemporal weighted pattern mining algorithm is proposed, which accurately identifies flight combinations that violate the minimum flight separation constraint from four-dimensional flight trajectories proposed by users, as well as flight combinations with close flight intervals and long flight delays in the airspace. Finally, the experimental results demonstrate that the algorithm efficiently verifies the user-proposed flight trajectory and promptly identifies flight conflicts during the trajectory negotiation and verification processes. The algorithm then analyzes the flight trajectories of aircrafts by applying various constraints based on the specific traffic environment; the flight combinations which satisfy constraints can be identified. Then, based on the results identified by the algorithm, the air traffic management system can negotiate with users to adjust the flight trajectory, so as to reduce flight delay and ensure flight safety

    Analytical energy spectrum for hybrid mechanical systems

    No full text
    We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum is obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level crossings, which correspond to two-fold energy degeneracy

    Association between different MAP levels and 30-day mortality in sepsis patients: a propensity-score-matched, retrospective cohort study

    No full text
    Abstract Background Sepsis is a life-threatening organ dysfunction caused by the infection-related host response disorder. Adequate mean arterial pressure is an important prerequisite of tissue and organ perfusion, which runs through the treatment of sepsis patients, and an appropriate mean arterial pressure titration in the early-stage correlates to the positive outcome of the treatment. Therefore, in the present study, we aimed to elucidate the relationship between early mean arterial pressure levels and short-term mortality in sepsis patients. Methods We included all suspected sepsis patients from MIMIC-III database with average mean arterial pressure ≥ 60 mmHg on the first day of intensive care unit stay. Those patients were then divided into a permissive low-mean arterial pressure group (60–65 mmHg) and a high-mean arterial pressure group (> 65 mmHg). Multivariate Cox regression analysis was conducted to analyze the relationship between MAP level and 30-day, 60-day, and 100-day mortality of suspected sepsis patients in the two groups. Propensity score matching, inverse probability of treatment weighing, standardized mortality ratio weighting, PA weighting, overlap weighting, and doubly robust analysis were used to verify our results. Results A total of 14,031 suspected sepsis patients were eligible for inclusion in our study, among which 1305 (9.3%) had an average first-day mean arterial pressure of 60–65 mmHg, and the remaining 12,726 patients had an average first-day mean arterial pressure of more than 65 mmHg. The risk of 30-day mortality was reduced in the high mean arterial pressure group compared with the permissive low-mean arterial pressure group (HR 0.67 (95% CI 0.60–0.75; p < 0.001)). The higher mean arterial pressure was also associated with lower 60-day and 100-day in-hospital mortality as well as with shorter duration of intensive care unit stay. Patients in the high-mean arterial pressure group also had more urine output on the first and second days of intensive care unit admission. Conclusions After risk adjustment, the initial mean arterial pressure of above 65 mmHg was associated with reduced short-term mortality, shorter intensive care unit stay, and higher urine volume in the first two days among patients with sepsis

    A green and scalable electrochemical route for cost-effective mass production of MXenes

    No full text
    One of the most unique properties of two-dimensional carbides and nitrides of transition metals (MXenes) is their excellent water dispersibility and yet possessing superior electrical conductivity but their industrial-scale application is limited by their costly chemical synthesis methods. In this work, the niche feature of MXene was capitalized in the packed-bed electrochemical reactor (PBER) to produce MXene at an unprecedented reaction rate and yield with minimal chemical waste. A simple NH4F solution was employed as the green electrolyte which could be used repeatedly without any loss in its efficacy. Surprisingly, both fluoride and ammonium were found to play critical roles in the electrochemical etching, functionalization, and expansion of the layered parent materials (MAXs) through which the liberation of ammonia gas was observed. The electrochemically produced MXenes (eMXenes) with excellent conductivity, applied as supercapacitor electrodes, could deliver an ultra-high volumetric capacity (1408 F cm-3) and volumetric energy density (75.8 Wh L-1). This revolutionary green, energy efficient and scalable electrochemical route will not only pave the way for industrial-scale production of MXene but also open up a myriad of versatile electrochemical modifications for improved functional MXenes
    corecore